

Piping Systems Research & Engineering Company (NTP Truboprovod)

Equipment Stress Analysis and Sizing

Version 3.07

User's Manual

Introduction

PASS/EQUIP is strength analysis software for vessels and their components designed for estimating load-carrying capacity in operation, test and assembly states. PASS/EQUIP is the basic module, which analyzes strength and stability of horizontal and vertical vessels using national and foreign standards.

PASS/EQUIP-Columns module analyzes strength and stability of columns considering wind and seismic loads.

PASS/EQUIP-Heat Exchangers module analyzes tube and casing heat exchangers (HE), including analysis of tube plates, tubes, pass partitions, casing, expansion joints, expansion vessel, floating head, and air–cooled heat exchangers.

Calculation of vertical steel tanks, designed for oil and oil product storage, is performed via module **PASS/EQUIP-Tanks**. For tanks, it is possible to create models of frame roofs and export it with loading and fixing to the ANSYS program for further strength and buckling calculations.

PASS/EQUIP-Seismic module analyses strength and stability of horizontal and vertical vessels considering seismic loads.

The program automatically creates a high-detailed solid model of vessel, with possibility of export to ACIS, IGES, Parasolid, STEP, JT, VRML, STL files.

This document contains a program overview, limitations of use, analysis methods, description of the user interface, information on required input data and analysis results, and installation and registration details.

A user-friendly interface and an easy to understand system for creating and analysing vessels makes the software accessible to any user. A convenient 3D graphic display allows easy verification of the accuracy of dimensions of both individual components and the entire model.

There may be small differences between this Manual's content and the software installed, as the program is being constantly updated.

Contents

1.1.	1
1. General	8
1.1. Program overview	
1.2. CAPABILITIES	9
1.3. LIMITATIONS OF USE	
2. System Administrator Manual	13
2.1. System requirements	
2.1.1. Minimum configuration	
2.1.2. Recommended configuration	
2.2. DISTRIBUTION KIT	
2.3. SOFTWARE INSTALLATION	
2.4. SOFTWARE COPY PROTECTION	
2.4.1. License providers	14
2.4.2. Transferring a license to a user	15
2.4.3. Internet License	16
2.4.4. Trial License	
2.4.5. Hardware dongles	
2.4.5.1 Converting Sentinel SuperPro dongles to Sentinel HL format	
2.4.5.2 Local dongles	
2.4.5.3 Network dongles	
2.4.5.4 Sentinel HL network dongle	
2.4.5.5 Guardant network dongle	
2.4.6. Updating hardware protection dongles (KeySt utility)	
2.4.7. Converting Sentinel Super Pro to Sentinel HL	
2.4.8. How to convert SuperPro to Sentinel HL	
2.4.9. Updating Guardant and Sentinel HL dongles	29
2.4.10. Sequence of operation for updating Guardant and	
Sentinel HL dongles	
2.5. INSTALLATION USING ACTIVE DIRECTORY (AD) TECHNOLOGY	
3. Working with PASS/EQUIP	35
3.1. GEOMETRIC KERNEL, SOLID MODEL GENERATION	
3.2. PROGRAM MODEL TYPES	
3.2.1. Horizontal vessels	36
3.2.2. Vertical vessels	
3.2.3. Column vessels	
3.2.4. Vertical tanks	39

3.3. CREATING, VIEWING AND SAVING INPUT AND OUTPUT DATA	40
3.4. Software window	41
3.5. GENERAL DATA	43
3.5.1. Wind loads	45
3.5.2. Seismic and inertial loads	45
3.5.1. Underground vessel	45
3.5.2. Elevation (height) of the vessel	45
3.6. INSULATION CALCULATION DATA	47
3.7. MAIN MENU	48
3.8. "VIEW" AND "STANDARD VIEWS" TOOLBARS	52
3.9. MODEL TREE	55
3.10. MATERIALS USING	56
3.11. THEMES TOOLBAR, CUSTOMIZATION OF TOOLBARS AND MENUS	57
3.12. SOFTWARE SETTINGS	58
3.13. SOFTWARE UPDATE SYSTEM	61
3.14. MEASUREMENT UNIT SETTINGS	63
3.15. DATA INPUT	64
3.15.1.1 Component name	65
3.15.1.2 Code	65
3.15.1.3 Temperature	65
3.15.1.4 Design pressure	65
3.15.1.5 Design values calculation	66
3.15.1.6 Material	66
3.15.1.7 Standard dimensions	69
3.15.1.8 Negative tolerance	69
3.15.1.9 Weld stielingul failo	70
3 15 1 11 Low-cycle fatigue	/ 1
3.15.1.12 Defects according to GOST 34233.11-2017	75
3.15.1.13 Space in the component	76
3.15.1.14 Component section	77
3.15.2. Cylindrical shell	80
3.15.3. Conical transition	83
3.15.4. Dished head	85
3.15.5. Flat conical head	88
3.15.6. Steep conical head	89
3.15.7. Flat head	90
3.15.8. Flat head with ribs	94
3.15.9. Integral flat heads with opening	95
3.15.10. Oval head	97
3.15.11. Spherical head without knuckle	. 98
3.15.12. Nozzle	100
3.15.13. Oval nozzle	106

3.15.14. Bend	107
3.15.15. Flange joint	109
3.15.16. Reversal flange	116
3.15.17. Bolted heads	118
3.15.18. Stiffening ring	127
3.15.19. Stiffening rings group	128
3.15.20. Saddle support	130
3.15.21. Bracket supports of horizontal vessel	135
3.15.22. Bracket supports of vertical vessel	137
3.15.23. Supporting legs	138
3.15.24. Supporting lugs	140
3.15.25. Supporting legs on the shell	141
3.15.26. Supporting ring	142
3.15.27. Lifting lugs	144
3.15.28. Joining pad	146
3.15.29. Trunnion	147
3.15.30. Additional loads	149
3.15.31. Vessel fixing	150
3.15.32. Service platform	151
3.15.33. Column components	154
3.15.34. Skirt support	157
3.15.35. Heat Exchanger with stationary tube plates	166
3.15.36. Tube plate joint	169
3.15.37. Tube bundle properties	170
3.15.37.1 Handling with tube sheet designer	174
3.15.38. Heat Exchanger with expansion bellows on the casing	178
<i>3.15.39. Heat Exchanger with expansion box in the casing</i>	181
3.15.40. Heat Exchanger with U-shaped tubes	182
3.15.41. Heat Exchanger with Floating Head	183
3.15.42. Air cooled exchanger	185
3.15.43. Nozzle of the air cooler chamber	188
3.15.44. Cylindrical jacket	189
3.15.45. U-shaped jacket	191
3.15.46. Partial jacketing	195
3.15.47. Half-pipe coil jacket	196
3.15.48. Half-pipe battery jacket	197
3.15.49. Jacket with longitudinal channels	198
<i>3.15.50. Convex bulk</i>	200
3.15.51. Virtual bulk	200
3.15.52. Ellipsoidal transition	201
3.15.53. Expansion bellows	202

3.15.54. Structure	202
3.15.55. Vertical tank for oil and oil products	204
3.15.55.1 Tank wall	205
3.15.55.2 Tank roof	206
3.15.55.3 Supported roof designer	208
3.15.55.4 Tank bottom	212
3.15.55.5 Tank nozzles	213
3.15.56. High pressure cylinder	214
3.15.57. Ellipsoidal high pressure head	215
3.15.58. High pressure flat head	215
3.15.59. Spherical unbeaded high pressure head	216
3.15.60. Bolted high pressure flat head	216
3.15.61. Bolted high pressure spherical head	217
3.15.62. High pressure nozzle	218
3.15.63. High pressure flange joint	218
3.15.64. High pressure bend	219
3.15.65. Viewing window in the boss	220
3.15.66. Viewing window in the nozzle	222
3.15.67. Flange boss	223
3.15.68. Vessel assembly	224
3.15.69. Link	225
3.15.70. Custom equipment	226
3.15.71. Non-circular component	228
3.15.72. Connection node	231
3.16. Editing and deleting input data	233
3.16.1. Group data editing	234
3.16.2. Insulation setting by list	235
3.16.3. Material setting by list	235
3.17. DATA EXPORT AND IMPORT	236
3.17.1. Export of a tank model to Ansys	237
3.17.1.1 Model loading as per STO-SA-02-003, GOST 31385-2016	238
3.17.1.2 Model loading as per API-650	241
3.18. VESSEL COMPONENTS ANALYSIS AND OUTPUT OF RESULTS	242
3.19. OUTPUT IN RTF FORMAT	243
3.19.1. Template creation	245
3.19.2. Use of variables	246
3.19.3. Conditional variables	247
3.19.4. Embedding the vessel image	250
3.19.5. Embedding analysis time and date	250
Example	252
4.1. DATA INPUT	252

4.

4.2. ANALYSIS AND OUTPUT	
5. References	

1. General

1.1. Program overview

PASS/EQUIP software allows static and low-cycle fatigue strength and stability analysis of pressure vessels and their components to evaluate loadcarrying capacity in operation state (including those operating in corrosive hydrogen sulfide environments), as well as in test and assembly states.

PASS/EQUIP analysis methods are based on the national and foreign codes listed in references.

Analysis is carried out for each component individually and includes the following:

- cylindrical shells (smooth and stiffened by stiffening rings);
- conical transitions;
- welded and bolted heads: spherical, ellipsoidal, torispherical, conical and flat (including reinforcing ribs and with a central opening) heads, spherical heads without knuckle;
- flange joints;
- nozzles in shells and heads;
- saddle supports and cylindrical shells for horizontal vessels;
- cylindrical shells and heads in areas of intersection with supporting lugs and legs for vertical vessels;
- cylindrical conical shells and dished heads at attachment points of lifting lugs, trunnions, joining pads; branches;
- bends;
- convex bulks;
- ellipsiodal transitions;
- column components under wind and seismic loads, including those mounted on a support structure;
- support shells of columns ;
- tube plates, casing, tubes, expansion joint, expansion vessel, floating head of heat exchange vessels;
- air-cooled chambers of heat exchangers, nozzles into chambers;
- jacketed vessel components(cylindrical, U-shaped, partially jacketed, coiled and half-pipe, with longitudinal pipes);

- components of high-pressure vessels (shells, heads: flanges, heads, stubins);
- components of vertical tanks;
- viewind windows, bosses;
- noncircular cross section (rectangular, oval, stayed and reinforced);
- strength and stability analysis of horizontal and vertical vessels is carried out considering seismic and wind loads.

PASS/EQUIP is recommended for design and verification analysis in oil-refining, petrochemical, natural gas, petroleum and other industries.

1.2. Capabilities

PASS/EQUIP basic module:

- data input and analysis. An error message will be display if all required data are not entered or data are entered incorrectly;
- input of additional wind, seismic loads, weight loads, forces and moments;
- thickness calculation (including for external pressure) and calculation of allowable pressure, forces and moments;
- analysis of vessel flange joints under pressure, external forces, moments and temperature stresses;
- automatic calculation of values such as weight, length, stiffening ring properties (in both cylindrical shells and saddle supports), circumference chord length, etc. after input of component dimensions and material properties;
- calculation of fluid volume, fill height, filling ratio and hydrostatic pressure in each component of horizontal and vertical vessel;
- calculation of volume and weight of the product in each insulated cavity of the vessel;
- representation of model structure as a structure tree.
- 3D graphic display which allows the color of separate components and the entire model to be customized;
- "wire-frame" and "transparent" view which allows internal components to be seen;
- displaying of model filling by product
- switching on/off of insulation and lining displaying;

- estimation of materials using;
- when dimensions or load properties of one component are changed, an option to automatically adjust all adjacent components is given;
- automatic creation of precise solid model of vessel and its export to popular solid modelling systems, i.e. ACIS, IGES, Parasolid, STEP, JT, VRML, STL.
- customization of measurement units;
- selection of materials from the database (as per GOST, ASME etc.) with possibility of adding new materials. Allowable stress, elasticity modulusand other values are automatically changed when changing material, temperature or wall thickness;
- selection of components from GOST (ATK) database (shells, heads, flanges, gaskets, studs of flange joints, saddle supports, supporting legs, cylindrical and conical supports, nozzles, cross-sections of ribs, stiffening rings, beam elements of support structure);
- analysis of horizontal vessel shells with any number (more than 2) and position of saddle supports; output of diagrams for deformation, bending moments, transverse forces and strength and stability allowances;
- calculation of many components (shells, heads, transitions) is performed as per the Russian (GOST, RD) and foreign (EN, ASME) codes selected by user.
- strength calculation of junction point between nozzle and vessel against influence of pressure and external loads, as per as per the Russian GOST 34233.3-2017) and foreign (WRC 537(107)/297) codes.
- calculation of pressure, external forces, moments and temperature stresses for valves and vessel flange joints, as per the Russian codes (GOST, RD), as well as per ASME VIII div.1 (pressure), ASME VIII div.2 (pressure and external loads).
- analysis of bolted heads (with flange joints) as a combined analysis of flange and bottom;
- calculation of low-cycle fatigue of vessel components;
- strength analysis of shells and heads considering displacement of weld joint edges, angularity and out-of-roundness of the shells;
- output, preview and printout of full (with intermediate analysis results) or short reports of component analyses;
- output of information on components that do not meet use or strength requirements;

- calculation of required test pressure as per components;
- building of compound unit model including two or more vessels;
- calculation of weights and positions of gravity centers, with consideration for filling per components and for vessel as a whole, in operating, assembly and test conditions;
- selection of thermal insulation of vessel components with consideration for climatic factors and work process-related parameters.
- export and import of vessel models from and to XML files;
- export of nozzles to Nozzle FEM format files (*.nzl);
- import of vessel models from MechaniCS XML format files. **PASS/EQUIP-Columns** module:
- determination of vibration frequency and modes for column type vessels with any number of components, including support structure;
- calculation of forces under wind loads (including resonance vortex excitation) and seismic loads for columns ;
- strength and stability analysis of column components;
- analysis of "cylinder + cone" support with the option of including a connecting shell;
- automatic determination of position and properties of most unsafe crosssection of supporting shell;
- calculation of loads on basement and support structure (if any) of columns.

PASS/EQUIP-Heat Exchangers module:

- input of heat-exchange component properties within a single multiwindow interface;
- calculation of forces in tube plates, casing and tubes;
- analysis of tube plates, casing, tubes, expansion joint, expansion vessel, floating head.

PASS/EQUIP-Tanks module:

- tank parameters setting in a single multiwindow dialog;
- automatic weight measurement;
- strength and stability analysis of the wall, stationary self-supporting roof and tank head, including wind, snow and seismic loads;
- creation of a frame roof model with automatic weight calculation;

- export of the model with loads and constraints to the ANSYS program for further strength and buckling analysis;
- wall anchorage estimation;
- calculation of loads on basement;
- estimation of allowable stresses on the nozzles of cut-ins in the tank wall; **PASS/EQUIP-Seismic** module:
- calculation of loads from seismic forces on horizontal and vertical vessels of seismic resistance categories Is, IIs, IIIs;
- analysis of vessel components considering seismic loads;
- consideration of vessel installation height when calculating seismic loads.

1.3. Limitations of use

This software assumes certain limitations in the design of vessel components, which are described in corresponding codes of standards listed in references [5].

If any of the conditions are not met for a given component, a warning message will be displayed and analysis for that component will not be performed. Analysis of other vessel components can be continued.

2. System Administrator Manual

2.1. System requirements

2.1.1. Minimum configuration

Pentium 4 processor

1 GB RAM

1 GB free space on hard drive.

Video adapter 1024x768 or higher, 16-bit (65535 colors) or higher.

Windows 8/10/11

Internet Explorer 5.0 or higher

Dongle drivers (come with distribution kit).

2.1.2. Recommended configuration

Intel Core i5 2 GHz or higher 4 GB RAM Video adapter with OpenGL 2.0 hardware support, resolution 1280x1024x24 Windows 8/10/11 Internet Explorer 7.0 or higher MS Word 2003 or higher

2.2. Distribution kit

- 1) Flash drive contains the software installation package:
 - a. **SETUP.EXE** Pass/Equip program installation file
 - b. **ACROBAT** setup directory for Acrobat Reader a program for preview and printout of documentation;
 - c. **SENTINEL** setup directory for manual installation of the dongle Sentinel Protection Installer 7.6.9.exe;
 - d. **GUARDANT** setup directory for manual installation of the dongle Guardant.
- 2) License Agreement.
- 3) Registration form (if purchased through dealer)..
- 4) Dongle(s) (one per purchased copy) providing protection against unauthorized access.
- 5) Software printed documentation.

2.3. Software installation

To install the program on the user's computer, you must:

- 1) Log in with administrator rights.
- 2) Install the media with installation files.
- 3) Run the **setup.exe** file.
- 4) Follow all instructions from the installation program.

During the installation process, you must specify the path where the program will be located, as well as the name of the folder for the program menu. The package includes **Acrobat Reader** for reading documentation.

5) If the program comes with a local hardware dongle, then install the dongle in the USB port.

ATTENTION: During installation of the program, the hardware dongle must NOT be present in the port to avoid damage it.

- 6) Check that the system clock is correct. An incorrectly set system time may make it impossible to work with a USB dongle or cloud license.
- The program is launched via the Pass/EQUIP shortcut or by running the passat.exe file.
- 8) When you first start the program, specify the file with license parameters (license.txt) issued by the program supplier (see section 2.4).

When the program is supplied through dealers of <u>PASS Team</u>, to activate the dongle, you must send a registration card and, having received the dongle update string, use the dongle update program.

2.4. Software copy protection

The PASS/Equip program is protected from unauthorized copying. The protection lies in the fact that the program, while running, checks for the presence of an available and valid license and, if it is missing, displays a corresponding message.

2.4.1. License providers

A license for a program can be supplied by several types of license providers:

License provider		Description	
Sentinel HL	Hardware	A USB hardware key is used.	
Guardant	dongles	Installation of drivers is required for network dongles.	
Internet License	Web-license	The HTTPS protocol is used to transfer data. Requires Internet connection and PASS ID for authentication.	
Trial License	Trial license	This is a temporary Web-license that can be obtained directly from the program. Requires Internet connection and PASS ID for authentication.	

The type and parameters of the license provider used are stored in a text file (**license.txt**). If the user has several different licenses, he can easily switch between them simply by pointing to different license files in the program.

2.4.2. Transferring a license to a user

When recording a license to a hardware key or linking a PASS ID to a web license, the program uses a text file with license.txt settings, which is sent to the user. The user must specify this file when starting the program. After this, the program saves a copy of this file and subsequently works with it. The copy is saved in the following path.

```
\label{eq:approx} \ensuremath{\scaleses} APPDATA \ensuremath{\scalesess} \ensuremath{\scalesess} APPDATA \ensuremath{\scalesess} \ensuremath{\scales
```

To see the parameters of the license used (number, provider, etc.), user must to execute the command of the menu item Help \rightarrow About PASS/Equip program (Fig. 2.1).

About PA	About PASS/EQUIP program X			
P	PASS/EQUIP Version License serial: 50001 License type: Develo Support or license ex Modules available: [PASS/EQUIP Column PASS/EQUIP Heat E PASS/EQUIP Seismic PASS/EQUIP Seismic PASS/EQUIP Tanks	: 3.7.0.0 per piration: 30.09.2023 s xchangers		
	Copyright (C) 2024 P PASS/EQUIP e-mail: support@pa Developers:	ASS Team assuite.com A. N. Krasnokutsky Y. Y. Trifonov A. I. Timoshkin	ОК	

Fig. 2.1 License parameters

A screenshot of this dialog box with license parameters and program version number must be attached when contacting technical support for the program.

To change the license, you must selec **Options** \rightarrow **Customize license file**. After this, user must specify the path to the new license file.

When you first launch the program, it will show an error that the license was not found and will offer several options for further actions. If the user has a valid license file, then he must press the "Browse" button. To configure internet license, see i.2.4.3.

2.4.3. Internet License

To obtain a web license, the user must register a PASS ID at:

https://lms.passuite.com/personal/signup

PASS ID is a pair of {email, password}, user identification data used to work with the internet license. The user's email can be any valid address, including a corporate address. The user generates the password independently. The program remembers the **PASS ID** for further quick verification of the internet license when launching the program. User can also write PASS ID to the license file.

PASS ID registration is a one-time process. Multiple licenses can be associated with one **PASS ID**. After registration, the user must send the sales manager (<u>support@passuite.com</u>) his email address to link the license to it..

Attention:

Do not tell anyone your PASS ID password, not even employees of PASS Team!

Sales and technical support services do not require Your password to manage your license.

To work with internet license, a hardware key is not required, but a permanent connection to the Internet is required. To work with the web-license, the HTTP protocol is used, so if the user has access to the Internet through a browser, then no special firewall settings are required.

If the system is configured for access via a Proxy server, its settings will be applied automatically.

If the license file does not contain **PASS ID**, then after reading it the program will generate an error (**Fig. 2.2**).

	EQUIPMENT STRESS ANALYSIS & SIZING	
Invalid e-mail or password		
I want to set up the license file	Retry	
I want to get the trial version	Exit program	
passuite.com	Copyright (C) 2003-2024, PASS Team	

Fig. 2.2 PASS ID authorization error

To enter a valid **PASS ID**, click the OK button, after which the **PASS ID** authorization dialog box will appear, where user must enter your email address and password (**Fig. 2.3**), which were used during registration (see above). If **PASS ID** has not been registered, user can go to the registration page using the link "Get trial license" a **PASS ID** account in the same dialog box or recover your **PASS ID** password.

	EQUIPMENT STRESS ANALYSIS & SIZING		
Log in PASS ID is a unified account for accessing various PASS online resources. With PASS ID, you can get trial access to software, manage you licenses, get updates and more.			
username@example.com			
Password 🕲			
Create PASS ID Account	Log in		
I forgot password	Cancel		
passuite.com	Copyright (C) 2003-2024, PASS Team		

Fig. 2.3 PASS ID authorization for internet license

2.4.4. Trial License

To receive a trial version, the user must fill out the registration form to obtain a Trial License. After successful registration, a **PASS ID** is created for the user and a new Trial License is attached to it. The entire process occurs automatically, without the participation of a manager.

The same **PASS ID** can be used both to obtain a Trial License for other programs and to purchase a commercial license.

If the user does not have a commercial valid license, then he can obtain a trial version directly from the program upon first launch or when any licensing error occurs. To do this, in the dialog box (**Fig. 2.2**) user need to click on the "I want to get the trial version" link. After clicking on this link, the program will prompt to fill out a form to register the **PASS ID** of the trial version (**Fig. 2.4**).

CARS	EQUIPMENT STRESS ANALYSIS & SIZING	×
Sign up		
PASS ID is a unified account for acce PASS ID, you can get trial access to so and more.	ssing various PASS online resources. oftware, manage you licenses, get up	With dates
username@	@example.com	
Pass	word	8
First Name	First Name	
Last Name	ast Name	
l am	Select below	~
Job Title	b Title Job Title	
Organization	rganization Organization	
Country	Select below	~
Phone (with country code "+")	+5(555)555-55-55	
Industry	Select below	~
ow did you know about us?		~
 ☑ I want to receive PASS news by e-mail ☑ I agree with the personal data processing to receive local support or sales offers 		
I already have PASS ID	Sign up	
I forgot password	Cancel	
passuite.com	Copyright (C) 2003-2024 PASS	Team

Fig. 2.4 The registration form of trial version

After filling out the form, user must click on the "Sign up" button. If all fields are filled in correctly and the program has received a connection with the server, then the program enters the waiting mode for registration to complete (**Fig. 2.5**). Otherwise, the program will generate an error with the appropriate description (for example, this **PASS ID** has already been registered).

	X EQUIPMENT STRESS ANALYSIS & SIZING
Wait a response	e from the license server
	Cancel
passuite.com	Copyright (C) 2003-2024, PASS Team

Fig. 2.5 Registration standby mode PASS ID of trial version

As soon as the user confirms his email address, the program will issue a trial license file (**Fig. 2.6**), which must be saved in order for the program to start using it.

	CORRECT AUTOMIC AUTOMI	¥ EQUIPMENT STRESS ANALYSIS & SIZING
0	Save the license file for future us % LMS type = 4 % Web server = passuite.com product = 2* 9bc -7e7b license_number = 50001 % dd	e: **. `
		Save As
passuite.com		Back to register Copyright (C) 2003-2024, PASS Team

Fig. 2.6 The file of a trial license

If the user already has a **PASS ID**, but for some reason does not have a license file, then in the registration form (**Fig. 2.4**) user can follow the link I already have a **PASS ID**. In this case, **PASS ID** confirmation is not required, the program does not enter standby mode, and upon a successful response from the server, it will issue a license file (**Fig. 2.6**).

2.4.5. Hardware dongles

Hardware keys can be one of two types: **Sentinel HL** and **Guardant**. Their setup is generally the same, but differs in some details (see below).

For both types of keys, driver installation is not required, the key is immediately ready for use (this is the so-called driver-less configuration, the keys work in USB HID mode).

The supplied license.txt file already contains information about the key type and serial number, so in most cases additional configuration is not required. The type (local/network) of the key is determined by remote=local|remote parameter in the **license.txt** file.

2.4.5.1 Converting Sentinel SuperPro dongles to Sentinel HL format

The latest generation Sentinel SuperPro hardware dongles (purple and red) can be converted to the modern Sentinel HL key format. Users of such keys must leave the only key that requires conversion in the port, run the key update program **KeySt** and follow its instructions. After converting the dongle, **KeySt** will generate a status string that needs to be sent to managers. In response, the user will be sent an update string that needs to be applied to this dongle, after which the key will be ready for use.

2.4.5.2 Local dongles

A local key of any type is immediately ready for use. Before starting the program, the user must insert the key into the USB port of the computer and make sure that the light built into the key is continuously lit. The absence of a light bulb or a flashing light indicates either insufficient power of this USB port (in this case, the dongle must be placed in another port), or a malfunction of the port or dongle.

If automatic program updating is enabled and functions normally, then the local dongle is also automatically updated if necessary (when new versions are released, technical support is extended), this makes manual key updating and sending status and update lines unnecessary.

2.4.5.3 Network dongles

The network dongles is installed on the server - a computer selected by the user for this purpose on the network. To access the dongle, user need to install a network license manager. Each dongle type has its own (see below).

To configure a network dongle, user must edit the license.txt file by adding an entry indicating the location of the dongle server on the network. The following parameters are allowed (it is enough to indicate only one):

Parameter	Value
lm_ip	dongle server IP address
lm_host	network name (dns) of the key server
lm_id	LM server identifier (for Sentinel HL keys only)

The network dongle is not updated automatically. To update it, user should either use the KeySt utility to get the status string and apply the update string, or use it as a local key:

- 1. Place the dongle on a local PC with the program installed;
- 2. Edit license.txt by setting the parameter value **remote=local**;
- 3. Launch the program and perform the automatic update procedure (the information in the key will be updated);
- 4. Replace the dongle and the entry in the license.txt file.

2.4.5.4 Sentinel HL network dongle

For the Sentinel HL network dongle to work, user need to install a license manager service on the server (download link in the download section of the corresponding website), suitable for the server OS (options: Windows 7/8/10/11+, Linux Ubuntu, Linux RedHat, Linux common).

For communication with the application and control, Sentinel LM uses the TCP and UDP protocols, port 1947. After installing and starting the service, user can monitor the dongles in a web browser at:

http://<dongle server>:1947

2.4.5.5 Guardant network dongle

For the Guardant network dongle to work, user need to install a license manager service on the server, which can be downloaded from the manufacturer's website:

https://www.guardant.com/support/users/server/

For communication with the Guardant LM application, it uses the TCP and UDP protocols, port **3187**, for control via http - port **3185**. After installing and starting the service, user can monitor the keys in a web browser at:

http://<dongle server>:3185

To search for Guardant network dongle parameters, an additional settings file "gnclient.ini" is used. This file is created automatically using the parameters from "license.txt" and is placed in the folder:

%LOCALAPPDATA%\PASSUITE\<program id>\

The format supports the grdinipath parameter to specify the full path to the Guardant network dongle settings file, which can be written to "license.txt". Then the file is created and searched not in %LOCALAPPDATA%\PASSUITE\<program id>\gnclient.ini, but in the path specified by the grdinipath parameter.

The program_name parameter is also supported, which can be used instead of the program guid. If it is installed, the file is created and searched at:

%LOCALAPPDATA%\PASSUITE\gnclient.ini.

ATTENTION: gnclient.ini is created once. If the file already exists, its parameters are not overwritten. Therefore, further settings must be made either directly in gnclient.ini, or make changes to license.txt, but delete gnclient.ini to apply them. This file can also be obtained from the LM monitoring page (Menu "client ini-file settings").

2.4.6. Updating hardware protection dongles (KeySt utility)

To update hardware protection dongles, use the **KeySt** program (utility). The program allows you to update license information in Guardant and **Sentinel HL** dongles, as well as convert legacy **Sentinel SuperPro** dongles to the **Sentinel HL** format.

Attention:

Before using the KeySt, you must leave only one dongle in the port. After its launch, the program analyzes the found dongle and enters the mode of dongle updating or converting.

To update the dongles contents, the **state** and **update strings** are used. Using **KeySt**, the user generates a text string of the dongle state, sends it to the technical support, and in response receives a text update string. And the update string is applied to the dongle in the **KeySt** program.

Each update string can be applied to a dongle only once. After the update string is applied, all previous dongle state strings become invalid, so the new state string must be generated to subsequently update the dongle.

To convert a **Sentinel SuperPro** dongle to the **Sentinel HL** format, the user generates a dongle state string, sends it to technical support, in response receives an update string, which is applied to the dongle via **KeySt** program, after which the

dongle is converted to the new **Sentinel HL** format. After this, it is necessary to write a license information into the converted dongle. So the procedure is repeated, but with the dongle state and update strings of a new format. Using **KeySt**, the user generates the dongle state string, sends it to technical support, and in response receives an update string, which he applies to the dongle.

Only modern SuperPro dongles can be converted (**Fig. 2.8**). Legacy dongles (**Fig. 2.7**) cannot be converted and must be replaced.

Fig. 2.7. The legacy Sentinel SuperPro dongle

Fig. 2.8. The modern Sentinel SuperPro/Sentinel HL dongle

Attention:

Before using the KeySt, you must leave only one dongle in the port. After its launch, the program analyzes the found dongle and enters the mode of dongle updating or converting.

2.4.7. Converting Sentinel Super Pro to Sentinel HL

If the program detects the Sentinel Super Pro dongle, it enters into conversion mode (Fig. 2.9)

🔪 KeyST Su	perPro to Sentinel HL Upgrad	e		_		×
Dongle						
Model:	SuperPro	Hardlimit:	10			
S/N:	2596					
License						
Product:	PASS/NOZZLE-FEM	Version:	3.5			
Number:	Not specified]				
versions, it r To start the distributor. If you alread dongle upda CAUTION: T previous sta	The sentine SuperPro dongle has been detected. To work with the new program versions, it must be upgraded to the new Sentinel HL format. To start the upgrade procedure, send the dongle state string file to your product distributor. If you already have an update string file, write\open it down in the "SuperPro dongle update string" field below and click the "Upgrade" button CAUTION: The process is irreversible, you will not be able to return the dongle to its previous state!				s v	
SuperPro do	ongle state string					
DNIGBGBB	SCXBIBLEFIOHFJUEUCOFXBA	HIFRHGHTGNE	FGBDQJFE		Save	
SuperPro do	ongle update string					
					Open	
	Upgrad	e 😽	Refresh		🙁 Quit	t

Fig. 2.9. The KeySt program in conversion mode from SuperPro to the Sentinel HL format

Output infofmation:

Field	Description
Title	Current KeySt mode.
Model	Model of the dongle ("SuperPro").
Hardlimit	Maximum number of licenses that can be written to the dongle.
S/N	Unique serial number of the dongle.
License	Information about license in the dongle: product, version, etc.
State string	Dongle state string. You can save it (the "Save" button) to an .idx file, and send it to tech support.
Update string	Dongle update string. You can read it (button «Open») from an .upx file, received from technical support.

In this mode, the user has the following actions:

Action	Description
Convert	Starts the conversion of SuperPro to Sentinel HL (enabled if update string is presented). When you try to convert a legacy dongle (Fig. 2.7), an error message appears.
Refresh	Searches for the dongle again and then selects the appropriate mode.

2.4.8. How to convert SuperPro to Sentinel HL

You need to save the dongle state string to a file.
 Press the "Save" button and enter the .idx file name (as on Fig. 2.10).
 It's the best way.

Dongle		-	
Model:	SuperPro	Hardlimit:	10
S/N:	2596]	
License			
Product:	PASS/NOZZLE-FEM	Version:	3.5
Number:	Not specified		
The Sentine versions, it r To start the distributor. If you alread dongle upd CAUTION: T	I SuperPro dongle has been must be upgraded to the ne upgrade procedure, send th dy have an update string file ate string" field below and o he process is irreversible, yo	detected. To wo w Sentinel HL fo he dongle state st s, write\open it d click the "Upgrad	rk with the new program rmat. tring file to your product own in the "SuperPro le" button le to return the dongle to its
The Sentine versions, it r To start the distributor. If you alreac dongle upd CAUTION: T previous sta	I SuperPro dongle has been must be upgraded to the ne upgrade procedure, send th dy have an update string file ate string" field below and o 'he process is irreversible, yo te!	detected. To wo w Sentinel HL fo ie dongle state st e, write\open it d click the "Upgrad ou will not be abl	rk with the new program rmat. ring file to your product own in the "SuperPro le" button le to return the dongle to its
The Sentine versions, it r o start the distributor. If you alread dongle upd CAUTION: T previous sta	I SuperPro dongle has been must be upgraded to the ne upgrade procedure, send th dy have an update string file ate string" field below and o "he process is irreversible, yo te!	detected. To wo w Sentinel HL fo ie dongle state st c, write\open it d click the "Upgrad ou will not be abl	rk with the new program rmat. tring file to your product own in the "SuperPro le" button le to return the dongle to its
The Sentine versions, it r To start the distributor. If you alread dongle upda CAUTION: T previous sta SuperPro do DNIGBGBE	I SuperPro dongle has been must be upgraded to the ne upgrade procedure, send th dy have an update string file ate string" field below and o "he process is irreversible, yo te! ongle state string ICXBIBLEFIOHFJUEUCOFXB	detected. To wo w Sentinel HL fo ie dongle state st e, write\open it d click the "Upgrad ou will not be abl AHIFRHGHTGNE	rk with the new program rmat. .ring file to your product own in the "SuperPro le" button le to return the dongle to its

Fig. 2.10. Saving the dongle state string to an .idx file

You can also copy the dongle state string to clipboard via the context menu by right-clicking, and then paste it into the editor or email body.

- 2. The .idx file you must e-mail to technical support address <u>support@passuite.com</u>.
- 3. You will receive a reply e-mail with an attached .upx file containing the dongle update string.
- 4. In KeySt you need to open the file containing the update string. To do this, press the "Open" button and select the file (**Fig. 2.11**). You can also copy the update string from the clipboard.

Dongle			
Model:	SuperPro	Hardlimit	10
S/N:	2596]	
License			
Product	PASS/NOZZLE-FEM	Version:	3.5
Number:	Not specified		
versions, it To start the distributor. If you alread dongle upd CAUTION: 1 previous st	must be upgraded to the ne upgrade procedure, send th dy have an update string file late string" field below and o The process is irreversible, yo atel	o detected. To wo w Sentinel HL fo ne dongle state st e, write\open it d click the "Upgrad ou will not be abl	rk with the new program rmat. rring file to your product own in the "SuperPro le" button le to return the dongle to its
versions, it To start the distributor. If you alrea dongle upd CAUTION: 1 previous sta	must be upgraded to the ne upgrade procedure, send th dy have an update string file late string" field below and o The process is irreversible, yo stel	aetected. To wo w Sentinel HL fo ne dongle state st e, write\open it d click the "Upgrad ou will not be abl	rk with the new program rmat. rring file to your product own in the "SuperPro le" button le to return the dongle to its
versions, it To start the distributor. If you alreadongle upd CAUTION: 1 previous sta	must be upgraded to the ne upgrade procedure, send th dy have an update string file late string" field below and o The process is irreversible, yo stel	detected. To wo w Sentinel HL fo he dongle state st e, write\open it d click the "Upgrad ou will not be abl	rk with the new program rmat. Iring file to your product own in the "SuperPro le" button le to return the dongle to its
versions, it To start the distributor. If you alreadongle upd CAUTION: 1 previous sta SuperPro d BAHIFRHO	nust be upgraded to the ne upgrade procedure, send the dy have an update string file late string" field below and o The process is irreversible, yo stel ongle state string SHTGNEFGBDQJFBKAADXD0	detected. To wo w Sentinel HL fo the dongle state st e, write\open it d click the "Upgrad ou will not be abl CBPEBDLXUSUILF	rk with the new program rmat. rring file to your product own in the "SuperPro le" button le to return the dongle to its ROIIUSSIIE
versions, it To start the distributor. If you alrea dongle upd CAUTION: 1 previous sta SuperPro d BAHIFRHO SuperPro d	oupgraded to the ne upgrade procedure, send the dy have an update string file late string" field below and of The process is irreversible, yo stel ongle state string GHTGNEFGBDQJFBKAADXD0 ongle update string	detected. To wo ew Sentinel HL fo ne dongle state st e, write\open it d click the "Upgrad ou will not be abl	rk with the new program rmat. ring file to your product own in the "SuperPro le" button le to return the dongle to its ROIIUSSIIE
versions, it To start the distributor. If you alread dongle upd CAUTION: 1 previous star SuperPro d BAHIFRHO SuperPro d	must be upgraded to the ne upgrade procedure, send th dy have an update string file late string" field below and o The process is irreversible, yo stel ongle state string GHTGNEFGBDQJFBKAADXD0 ongle update string	detected. To wo w Sentinel HL fo ne dongle state st e, write\open it d click the "Upgrad ou will not be abl	rk with the new program rmat. ring file to your product own in the "SuperPro le" button le to return the dongle to its ROIIUSSIIE

Fig. 2.11. Applying the .upx file

5. With the dongle update string, press the "Upgrade" button (Fig. 2.12).

Fig. 2.12. Key upgrading

- 6. You will get a message about the status of operation. In case of an error, please contact technical support and send a screenshot of the error message.
- 7. If the conversion was successful, the dongle is in the Sentinel HL format. Now you need to update it and write the license information (see the next section).

2.4.9. Updating Guardant and Sentinel HL dongles

When KeySt finds Guardant or Sentinel HL dongle, it starts the dongle update mode (Fig. 2.13).

🔪 KeyST				_		<
Dongle						
Model:	Sentinel HL	Har	dlimit: 0			
S/N:	1824506421					
License						
Product:	PASS/NOZZLE-FEM	Version:	3.5	Active:	Yes	
Number:	10006	Workplaces:	1	Support until:	18.05.2026	6
Features						
Log						
2024/02/1 2024/02/1	16 12:15:46.430 :: Looking fo 16 12:15:46.552 :: Reading S	r a dongle Sen entinel dongle	tinel dongle fo OK.	und.	~	•
💾 SAVI	E Dongle State string				ATE Dongle	
				🗲 Refresh	🙁 Quit	

Fig. 2.13. Update mode for Sentinel HL (similar for Guardant)

Output information:

Field	Description
Title	Current KeySt mode.
Model	Model of the dongle ("SuperPro").
Hardlimit	Maximum number of licenses that can be written to the dongle.
S/N	Unique serial number of the dongle.
License	Information about license in the dongle: product, version, etc.
Features	List of license features for the program.
Log	Log of operation.
Field	Description

ActionDescriptionSave state stringOpens the .idx file name selection dialog.Update dongleOpens the .upx file selection dialog, and then starts
updating the dongle.RefreshSearches for the dongle again and then selects the
appropriate mode.ExitExits the program.

In this mode, the user has the following actions:

Attention:

1. For a Guardant dongle, the state string is generated once. The generation (even randomly) of a second state string will make it impossible to apply the update string from the previous state string.

Do not generate new state string while waiting for an update string from technical support, otherwise the received update string cannot be applied and the update process will have to start again.

2. For a Sentinel HL dongle, the update string can only be used once. If you reapply the same update string, or apply different update strings obtained from the original state string previously, error 40054 will occur:

Trying to install a V2C or V2CP file with an update counter that is out of sequence with update counter in the Sentinel protection key. Values of update counter in file are lower than those in Sentinel protection key

The next dongle update is possible only after generating a new state string.

2.4.10. Sequence of operation for updating Guardant and Sentinel HL dongles

1. You need to save the dongle state string. To do this, press the "Save state string" button and enter the filename (Fig. 2.14). For Sentinel HL

dongles, the file extension is .sntlidx, and for Guardant dongles, the file extension is .grdidx.

🔪 KeyST		- 0	\times
Dongle			
Model: Sentinel HL	Hardlimit 0		
S/N: 1824506421			
License			
Product: PASS/NOZZLE-FEM Ver	sion: 3.5	Active: Yes	
Number: 10006 Wo	rkplaces: 1	Support until: 18.05.20	026
Features			
Nº Namé Chinese language Export to ANSYS			
Log			
2024/02/16 12:15:46.430 :: Looking for a do 2024/02/16 12:15:46.552 :: Reading Sentin	ngle Sentinel dongle fo el dongle OK.	und.	Ç
SAVE Dongle State string		UPDATE Dongle	9
1		🤊 Refresh 🛛 🙁 Qi	uit

Fig. 2.14. Saving the state string of the Guardant/Sentinel HL dongle

- 2. The saved .sntlidx/.grdidx file must be e-mailed to tech support address <u>support@passuite.com</u>.
- 3. In reply e-mail you will get an attachment with the .sntlupx/.grdupx file containing the dongle update string.
- You need to open the .sntlupx/.grdupx file in KeySt program. To do this, press the "Update dongle" button and select the file (Fig. 2.15).

Model: Sen SiN: 182 License Product: PA Number: 100 Features N≥ Name 1 Chinese 2 Export t	ntinel HL 24506421 ASS/NOZZLE-FEM 20006 e language to ANSYS	Hard Version: Workplaces:	diimit: 0 3.5 1	Active: Support until:	Yes 18.05.2026
Model: Sen S/N: 182 License Product: PA Number: 100 Features N2 Name 1 Chinese 2 2 Export t 1	ASS/NOZZLE-FEM	Hard Version: Workplaces:	3.5 1	Active: Support until:	Yes 18.05.2026
S/N: 182 Product PA Number: 100 Features N≥ Name 1 Chinese 2 Export t	ASS/NOZZLE-FEM	Version: Workplaces:	3.5	Active: Support until:	Yes 18.05.2026
License Product PA Number: 10 Features N2 Name 1 Chinese 2 Export t	ASS/NOZZLE-FEM	Version: Workplaces:	3.5	Active: Support until:	Yes 18.05.2026
Product PA Number: 10 Features Nº Name 1 Chinese 2 Export t	ASS/NOZZLE-FEM	Version: Workplaces:	3.5	Active: Support until:	Yes 18.05.2026
Number: 10 Features № Name 1 Chinese 2 Export t	0006 e language to ANSYS	Workplaces:	1	Support until:	18.05.2026
Features Nº Name 1 Chinese 2 Export t	e language to ANSYS				
Nº Name 1 Chinese 2 Export t	e language to ANSYS				
Log					
2024/02/16 12 2024/02/16 12	2:15:46.430 :: Looking for 2:15:46.552 :: Reading Se	a dongle Sen entinel dongle	tinel dongle fou OK.	nd.	Ŷ
BAVE Dor	ongle State string			UPDA	TE Dongle
		Click "Line	date Dong	e"	

Fig. 2.15. Applying an update string to a Guardant/Sentinel HL dongle

5. The dongle update string will be applied and the dongle content will be updated.

In case of problems or error messages, please contact technical support at <u>support@passuite.com</u>, indicating the error numbers and attaching screenshots of the program.

2.5. Installation using Active Directory (AD) technology

Microsoft Windows Server 2003 and Microsoft Windows Server 2008 include integrated set of directory services Active Directory, constituent part of which Is Group Policy. Snap-in Software Installation, being part of Group Policy, provides remote installation of software on several workstations simultaneously.

Active Directory includes three (3) main installation scenarios:

- (Publish to User)
- (Assign to User)

• (Assign to Computer)

Attention!

- Software installation on the workstation will be finished only after reboot of the workstation.
- Software installation by scenarios Publish to User and Assign to User is not supported.

Software installation on the group of computers starts from creation of administrator setup. You can create this setup using ORCA MSI Editor. This program creates from file *.msi file setup.mst, which will save all changes introduced by administrator. Please find below the parameters, which are recommended to be adjusted before creating of mst-file:

Table	Parameter	Description
Directory	INSTALLDIR	Name of folder, where program files will be copied.
Directory	SHELL_OBJECT_FOLDER	Folder name in Start menu

Full program version is installed by default. Parameters Mode and Server inscribe dongle parameters into the branch of register HKEY_LOCAL_MACHINE\SOFTWARE\PSRE LTD\PassatXX\Settings.

After program installation, you should install dongle drivers for correct interaction with the dongle on local computers.

3. Working with PASS/EQUIP

Software interface conforms to standards for Microsoft Windows applications and is based on standard dialog components of Microsoft Windows (menus, toolbars, dialog boxes, input fields, etc.); therefore, working with PASS/EQUIP should be intuitive for any Windows user.

3.1. Geometric kernel, solid model generation

Starting from version 2.08, the program uses geometric kernel C3D developed by C3D Labs Company. This kernel provides an automatic creation of highdetailed solid model of vessel (creation of reinforcing pads, fillets, cutting holes in the shells, etc.), and its export to popular solid modelling systems. The following formats are currently supported:

- ACIS
- IGES
- Parasolid
- STEP
- C3D
- JT
- VRML
- STL

However, creation of solid models also places additional demands on the system performance. With the lack of operating speed of the program, you can use "Quick rebuilding of model". Comparison of modes is indicated in the table below:

Icon	Mode	Function description
	Without rebuilding	Model rebuilding is not performed during changes. This mode is recommended for use with similar editing operations in the number of components.
8	Accelerated model generation	In edit mode a solid model is built with some simplifications. Some components are displayed through OpenGL (bolts, heat exchanger tubes, trays, etc.). Reinforcement pads of nozzles are created by cylinder projecting, which at visualization may give significant distortions for tangential nozzles. For model rebuilding, an additional memory is required (500-1000 MB, depending on the model complexity). This mode is recommended for

		use for developing and editing of middle complexity models (50100 components).
8	Fine model generation	At editing, the solid model is built with maximum level of detail; reconfiguration may take a significant amount of time. All components are created as solid ones, with holes, fillets, etc. Reinforcement pads of nozzles are created by offset of the intersection line equidistant along the shell, which requires additional calculations. This mode may require additional memory (1-2 GB, depending on the model complexity). This mode is recommended for simple models editing.

Note: At calculation or export, the model will be automatically rebuilt in precise mode, if it hasn't been activated earlier.

3.2. Program model types

3.2.1. Horizontal vessels

Fig. 3.1 Horizontal vessel model

Vessels of this type are usually installed on saddle supports. Model of horizontal vessel is formed from the components specified in i...3.6. Axis z is placed horizontally, along the vessel casing.

Loads calculation methods available for horizontal vessels:
Load			
Seismic	Wind	Snow	
GOST 34283-2017	GOST 34283-2017	It is taken into account by	
GOST 55722-2013		the specific load on the service platforms (total	
STO-SA-03-003-2009		pressure of snow, materials	
AzDTN 2.3-1 (AZE)		on the shell distributed	
IS 1893 (IND)	IS 875 (IND)	along the length	
EN 1998 (EUR)	EN 1991-1-4 (EUR)		
CFE 2015 (MEX)	CFE 2020 (MEX)		
ASCE 7-16 (USA)	ASCE 7-16 (USA)		
Inertial loads			

3.2.2. Vertical vessels

Vertical vessels are installed on the landing pads or leg supports of different types. Axis z is placed vertically, along the vessel casing.

Methods for calculating loads available for vertical vessels are similar to the section 3.2.1.

Fig. 3.2 Vertical vessel model

3.2.3. Column vessels

Vertical vessels, which are installed on the skirt support. For calculating of this vessels type, a license for "Passat-Columns" module is required.

Fig. 3.3 Column vessel model

Loads calculation methods available for column vessels:

Load			
Seismic	Wind	Snow	
GOST 34283-2017	GOST 34283-2017	It is taken into account by	
GOST 24756-81	GOST 24756-81	the specific load on the service platforms (total	
AzDTN 2.3-1 (AZE)		pressure of snow, materials	

IS 1893 (IND)	IS 875 (IND)	and other loads) or the load
EN 1998 (EUR)	EN 1991-1-4 (EUR)	along the length
CFE 2015 (MEX)	CFE 2020 (MEX)	
ASCE 7-16 (USA)	ASCE 7-16 (USA)	

3.2.4. Vertical tanks

Fig. 3.4 Vertical tank model

Vertical filling tanks designed for storage of large volumes of product, with a flat head in the base.

For vertical cylindrical tanks a responsibility class shall be specified additionally, as well as snow area and turnaround of stored product with service life.

Loads calculation methods available for tanks:

Load		
Seismic	Wind	Snow

SP 14.13330.2014	SP 20.13330.2016	SP 20.13330.2016
AzDTN 2.3-1 (AZE)		
ASCE 7 (USA)	ASCE 7-16 (USA)	ASCE 7 (USA)
	API-650 (USA)	
CFE 2015 (MEX)	CFE 2020 (MEX)	
IS 1893 (IND)	IS 875 (IND)	
EN 1998 (EUR)	EN 1991-1-4 (EUR)	EN 1991-1-3 (EUR)

3.3. Creating, viewing and saving input and output data

Input data is in PASS/EQUIP format files with the following extension:

*.*pst_horiz* – for horizontal vessels;

*.pst_vert – for vertical vessels;

*.*pst_col* – for columns.

 $\overset{1}{=}$ *.*pst_tank* – for vertical tanks.

The name of the active file is displayed in the title bar.

To create a new data file, use the **Create** \square command in the main menu or toolbar.

The new file will be create after it is saved for the first time. The **Save** command will work as **Save as** for a new file.

To save the active file, select Save in the main menu or toolbar.

To save the file with a new name, select **Save as** in the main menu. If required, an appropriate file will be created, opened and will become a current data file for the program.

When saving, a file type can be changed now, i.e. vertical model or column can be saved as horizontal model for calculations of tests in the horizontal position on the saddle supports. Not all of components can be saved in the new type of model, and appropriate notification will be displayed. If the mode type is changed, the saved file wouldn't become a current file.

To open an existing file, select **Open** in the main menu or toolbar.

To properly view images and mathematical equations, Internet Explorer must be set to display pictures(Service \rightarrow Internet options \rightarrow Advanced \rightarrow Multimedia \rightarrow Display Pictures).

3.4. Software window

The following window will appear when PASS/EQUIP is launched:

Fig. 3.5 Program window

To start, select **File** from the menu. Select **Create to open a new file or** Open **to open an existing one** (or use appropriate \square and \bowtie icons).

A recently used file can also be opened from the **File** menu option. The number of available recent files is set in "**Document Options**" (see 3.9).

Vessel type must be selected before creating a new file (Fig. 3.6). Columns will be available only if **PASS/EQUIP-columns** module is licensed, or when working in demo mode.

×	New		
OK	New apparatus Horizontal vessels and apparatuses		
Cancel	Vertical vessels and apparatuses Column vessels and apparatuses		
<u>H</u> elp	Vessels-tanks		
	Column vessels and apparatuses Vessels-tanks		

Fig. 3.6 Vessel types

When vessel type is selected or when an existing file is opened, a table containing general vessel data, data on the vessel's internal environment and analysis methods in test state will be displayed (Fig. 3.8).

After you press "OK", a work screen with a graphic view and toolbars containing all basic commands will be displayed (Fig. 3.7).

Graphic display of model is located in the middle of the screen. The symmetry axis of the model runs along the Z axis.

Icons in the right column of the screen are used for creating new model components.

Fig. 3.7 Model window

When creating vertical cylindrical tank, a dialog for input data editing is opened automatically (i. 3.15.55).

3.5. General data

Dialog of general data includes main parameters of the vessel and its environment, information of its internal medium, types of calculation, etc.

General data	at in estication of a				:
Leading games	iu merciai ioaus				4
Loading case	Operating fluid name		Operating fluid density ρ, kg/m³	Number of cycles, N	
Operating	Water		1000	1000	
Steaming	Steam		12,7	1000	Add
					Delete
Fluid filling Sulfurated hydrogen fluid Gas< (a) Liquid			• >>		
Fillin	g ratio, E: 100 %		Limit temp. of the operating fluid corr. activity, tnp: $_{\rm 250}$ $^{\circ}{\rm C}$		
Operating fluid group as per CU TR 032/2013:			Low-cycle fatigue		
Test pressure calculation: GOST 34347, hydro			Impact testing require	ment evaluation (MDMT)	
Inclusion of static head in the	design pressure calculation			owest expected material tem	perature: 49 90
Kind o	f test: Wudsetesting	-			
Test pre	soure: 1 MDa		No LIG-20/f) even	ntions	[design] O MAWP
No correction in the test	MPa			puona	
Insulation data				Base elevation,	Хосн: 0 mm
			Consider internal t	emperature loads (a ∙∆T)	
	ок			Cancel	

Fig. 3.8 General data

Parameter "Operating fluid group as per TR CU 032/2013" is designed to estimate the vessel category on the basis of this regulatory document.

If test state analysis is selected (in this instance "Hydrotesting"), all components will be analysed both for operation state and hydraulic test state with specified test pressure.

Liquid density and its fill factor (when using "Vessel carrying fluid") must be entered in order to calculate weight properties of vessel components in operation state. Vessel fill can also be set through fluid volume or fill height. The "Load Cases" table allows to define several operating modes that will be simulated within one calculation. The loading case is characterized by the name, the name of the operating fluid and its density. The filling for all loading cases is considered uniform (to speed up the computing process), but the density of the operating fluid is assigned individually. This allows you to simulate various filling cases (working in steaming mode, etc.).

"Corrosion is not taken into account in the test calculation" enables to exclude a corrosion allowance (c_1) at calculations of all model components in test conditions, if they are performed for a new vessel.

"Calculation of test pressure" allows showing the code, under which a test pressure will be calculated.

"Inclusion of static head in the test pressure calculation" allows you to control subtraction of hydrostatic head pressure (pH), when evaluating a hydrotesting pressure. This item has appeared, because today there is no clear definition of the "test pressure" concept. In hydrotesting conditions, different components are subjected to different pressures (depending on the height of water). If, under test pressure, we assume pressure without hydrostatic one ("according to the upper gauge"), then in order to obtain pressure under hydrotesting conditions for a vessel component calculated in accordance with GOST, the test pressure shall be reduced by the hydrostatic pressure value. Otherwise, you can get an excessive pressure for the head.

"Inclusion of static head in the design pressure" allows you to control the influence of the static head on the design pressure (p) when evaluating the test pressure (ptest). This item has appeared due to discrepancies in the regulations regarding the determination of the design pressure (p).

"Hydrogen sulfide environment" must be selected when analyzing vessel components operating in corrosive hydrogen sulfide environments.

"Low-cycle fatigue analysis" must be selected for analyzing vessel components operating under cyclic loads where the number of cycles is between 10^3 and 10^6 .

"Insulation calculation data" allows setting parameters, according to which calculation of thermal insulation for components will be performed (see. i.3.6).

"MDMT" (Minimum Design Metal Temperature) option allows you to assess the suitability of the material and the need for additional testing in accordance with the selected standard for each component. When this option is activated, a cell appears in which the user must enter the minimum temperature value at which the vessel can operate (based on the technological process or climatic data). The option "Taking into account internal temperature loads" allows, when solving a beam model, to take into account loads due to thermal elongation of elements (with a rigidly clamped model or using non-standard fastenings).

The option «<u>Elevation of the vessel</u>» allows you to take into account the presence of any building structure under the vessel.

The option «Buried» allows you to take into account the influence of the soil (see p.3.5.2).

3.5.1. Wind loads

The value of the natural period (T) is used in the calculation of wind and seismic loads for horizontal and vertical vessels. It can be calculated automatically or entered manually for each load case. The natural period of the vessel body is implied. Minor sections of the model (eg piping, internals) may have a lower oscillation period, but these values should be excluded from the analysis.

If "Calculation of vortex resonance" is selected, the chances of resonance and structure strength, if such resonance occurs, will be determined. This item is recommended for free-standing smooth and high structures, i.e. chimneys. In other cases, its activation may lead to excessively conservative assessment of strength.

3.5.2. Seismic and inertial loads

The "Allowance for seismic and inertial loads" option is required for calculating vessels taking into account loads due to seismic effects. This calculation is available for the PASSAT-Seismic, PASSAT-Columns, PASSAT-Tanks modules. It is necessary to select the standard according to which the loads will be calculated.

3.5.1. Underground vessel

The "Underground Vessel" tab is available for horizontal vessels if the "Buried" option is activated in one of the load cases. It allows you to set soil parameters in accordance with the selected code.

3.5.2. Elevation (height) of the vessel

This option provides consideration for the presence of any building structure under the vessel, which leads to an increase in wind and seismic loads.

VESSEL STRENGTH ANALYSIS SOFTWARE

Horizontal vessel on saddle supports

Supporting lugs

Supporting lugs welded poles

3.6. Insulation calculation data

Specified properties are used for calculation of parameters of calculation of component thermal insulation (i.3.15.1.10)

Insulation dat	ta	×		
Stationing:	Outside Select location: From database	•		
Country: Region: City:	CARACTURAN Constantinos Successos	•		
- Average ter	Search by: Find Average temperature Mid-annual: 4.3 ec			
Average	Average maximum of the warmest month: 24,1 ℃ Average temperature of the coldest five-day period: -27 ℃			
Average monthly relative humidity of the warmest month: 71 % Insulation project: ROCKWOOL + Steel sheets				
	OK Cancel			

Fig. 3.10 Insulation calculation data

Parameter "Project of insulation" is the name of the package of rules, according to which insulation components are selected.

3.7. Main menu

The Table 3-1 briefly describes all available main menu items.

Table 3	3-1
---------	-----

Menu item name (icon)		Function
"File"	submenu	
	New (Ctrl+N)	Create a new file
1	Open (Ctrl+O)	Open an existing file (with *.pst extension)
	Close	Close active file
	Save (Ctrl+S)	Save active file
	Save as	Save active file with a new name
X	Export to XML	Export model to XML file
Ê	Export to Nozzle FEM	Exports nozzle data to a "Nozzle-FEM" file.
	Export to C3D, IGES, STEP, ACIS, ParaSolid, JT, VRML, STL	Saves solid model of vessel to one of formats
X	Import from XML	Import model from XML file
X	Import from XML MechaniCS	Import model from XML MechaniCS file
	Exit (Alt+F4)	Exit program
"Edit"	submenu	
\$	Undo (Ctrl+U)	Cancel the last command
C	Redo (Ctrl+R)	Redo the last cancelled command
<i>></i>	Edit (F4, double click)	Edit model components
×	Delete (F8, Delete)	Delete model components
	Copy (Ctrl+C)	Copy selected component to clipboard. All component data except name will be copied as

Menu item name (icon)		Function	
		well. Sub-components will not be copied.	
¥	Cut (Ctrl+X)	Similar to copy, but after being pasted, the original component will be deleted (after user's confirmation)	
Ē	Paste (Ctrl+V)	Paste copied component into the model. If an component is selected at this time, the new component will be adjoined to it. If no components are selected (or if selected component has several possible joint locations), you will be asked to specify the new component's joint location.	
	Change color	Adjust display color of model components	
"View	" submenu		
Toolbars		Turn on/off the following toolbars: View (3D model view options), Standard views (common vessel model views), Components (components which can be added to the model), Themes (change interface styles).	
Settings		Adjust interface and toolbars and set hotkeys.	
Status	bar	Turns status bar on/off.	
"Options" submenu			
Units		Set measurement units used for dimensions, load properties and material properties.	
General data		Display (and edit) general model data.	
Customize dongle access		Displays network or local dongle settings	
Settings		Displays software settings	
	Language	Change interface and output language (Russian or English).	
11	Components temperatures	Provides setting of calculation temperatures simultaneously for several components of the model	

Menu item name (icon)		Function
	Components insulations	Provides setting of thermal insulation parameters simultaneously for several components of the model
"Calcu	lation" submenu	
Ħ	Vessel calculation (F3)	Run calculation and produce output file
C.C.F.	Converting to WORD (Ctrl+W)	Create output report in RTF format (MS Word).
"Help" submenu		
0	Help	Open help file.
P	Check for updates	Runs an integrated automatic update system.
	About Passat program	Display software version, support contact e-mail and copyright information.

Components library				
4	Cylindrical shell		Cylindrical jacket	
0	Conical transition		U-shaped jacket	
	Ellipsoidal head		Partially jacketed vessel	
	Spherical head		Half-pipe coil jacket	
0	Torispherical head		Half-pipe battery jacket	
	<u>Flat conical head (α>70°)</u>		Jacket with longitudinal channels	
0	<u>Steep conical head (α<70°)</u>		Ellipsoidal bulk	
	Spherical head without knuckle		Spherical bulk	
	Flat head (cover))	Torispherical bulk	

*	Flat head with ribs		Virtual bulk
0	Integral flat heads with opening		Ellipsoidal transition
	Oval head		Expansion bellows
2	Nozzle		Heat Exchanger with stationary tubesheets
V	Oval nozzle	n	Heat exchanger with U-shaped tubes
	Bend		Heat exchanger with floating head
H	Saddle support ^{a)}		Air-cooled heat exchanger
Dr	Bracket supports ^{a)}	2	Nozzle (tie-in) to air-cooled heat exchanger
	Stiffening ring		High pressure cylinder
	Stiffening rings group		Ellipsoidal high pressure head
	Flange joint		High pressure flat head
0	Reversal flange		Spherical unbeaded high pressure head
	Bolted flat head		Bolted high pressure flat head
0	Bolted ellipsoidal head		Bolted high pressure spherical head
Ò	Bolted spherical head without knuckle	6	High pressure flange joint
	Bracket supports ^{b)}	5	High pressure bend
1	Supporting legs ^{b)}	2	High pressure nozzle
	Supporting lugs ^{b)}		Packing ^{c)}
Н	Supporting legs on the shell ^{b)}	9	Service platform
	Supporting ring ^{b)}		Tray block c)

10	Lifting lug		<u>Skirt</u> ^{c)}
	Joining pad	O	Viewing window in the boss
(<u>Trunnion</u>	2	Viewing window in the nozzle
C	Lumped mass	0	Flanged boss
*	External loads		Vessel assembly
+++++	External distributed loads	8	Link
-	Vessel fixing	÷	Custom equipment
V	<u>Structure</u>		Non-circular component
Connection node			
 ^{a)} for horizontal vessels ^{b)} for vertical vessels ^{c)} for column vessels 			

3.8. "View" and "Standard views" toolbars

The Table 3-2 describes the functions of the "View" and "Standard views" toolbar icons.

Table 3

Icon (name)		Function
	Front view	Full-screen model display in Z-Y plane (X-axis pointed away from screen)
Ø	Back view	Full-screen model display in Z-Y plane (X-axis pointed toward screen)
Ð	Left-side view	Full-screen model display in X-Y plane (Z-axis pointed away from screen)
Ø	Right-side view	Full-screen model display in X-Y plane (Z-axis pointed toward screen)
Þ	Top view	Full-screen model display in Z-X plane (Y-axis pointed toward screen)

Icon (name)		Function
Ø	Bottom view	Full-screen model display in Z-X plane (Y-axis pointed away from screen)
9	Isometric view	Full-screen isometric model display
	Fit to the screen size	Full-screen model display in current view
Ð	Zoom in	Zoom in using the left mouse button
	Fit to the component size	Full-screen model display in selected component
đ	Zoom in/zoom out	Zoom in/out by moving the cursor up or down using the left mouse button
Q	Rotate around axis	Rotate model around axis by holding down the left mouse button and moving the cursor
۲	Rotate around selected point	Rotate model around selected point by holding down the left mouse button and moving the cursor
	Move	Move model using the left mouse button
6	Cancel view	Return to previous view (before rotation, zoom, moving)
đ	Repeat view	Repeat cancelled view change (rotation, zoom, moving)
	Solid	Display model as a solid, 3D object
	Gradient	Display model in gradient (semitransparent) mode
Ø	Beam	Display model as transparent beam
Ø	Display filling	Display of calculated filling as translucent volume
	Insulation and lining view	Display of created volumes of insulation and lining
P	Display service plaforms	Display or hide sites existing in the model
	Colors by materials	Highlighting of components by color according to the "Materials using" panel
đ	Perspective view	Display model in perspective view
Ī	Dimensions	Display dimensions of model components

Icon	n (name)	Function
[₩] [₩] ₩ ₩	Elevation labels	Display elevation labels of shells, nozzles and platforms, stiffening rings
i T	Product level marks	Display product level marks by cavities
8	Labels	Display model with component labels
\star	Origin point	Display origin point of solid model (relating to it, barycenters of components are calculated)
80	Fine generation of model	The solid model is created in detail that can retard the work in case your computer is too slow.
8	Accelerated model generation	Some components of solid model are created more simply.
	No model rebuild	Model rebuilding is blocked.
4	Regenerate model	Forced rebuilding of the model with the elimination of artifacts left over from previous incomplete rebuilds
-	Moving down of the component in the current branch $(Ctrl+\downarrow)$	Changing position of the selected component in the model hierarchy relating to the components
	Moving up of the component in the current branch $(Ctrl+\uparrow)$	of the same level. This option is available only for daughter components (nozzles, rings, etc.).

For quick move \bigoplus , zoom \bigcirc and rotation \bigcirc of the model, you can also use left, right and middle mouse buttons, respectively, while pressing the "*Ctrl*" key. To rotate the model around a selected point \bigotimes you can use the right mouse buttonwhile pressing the "*Ctrl*" and "*Shift*" keys together.

When rotating the model around a selected point 3, X and Y coordinates (in the coordinate system of the screen) are determined by the mouse cursor position, while the Z coordinate ("depth") is determined by the current depth of non-transparent model component under the mouse cursor. If no non-transparent components are present under the mouse cursor, Z coordinate is set as equal to model's average depth.

3.9. Model tree

Fig. 3.11 "Model tree" Toolbar

A model tree is designed for a visual presentation of model structure and quick navigation. Elements of model are represented as scaled-down icons with names. The icons are interactive and have a pop-down menu. So, they provide easy access to component editing commands. A top-most component with model file name provides general data editing.

3.10. Materials using

Materials using		×
Material	Color	Quantity
06ХН28МДТ		37,74 kg
07X13AF20 (4C-46)		25,71 kg
08X18F8H2T (KO-3)		722,4 kg
09Г2		87,22 kg
12MX		1336 kg
12X18H10T		37,28 kg
12X18H12T		19,68 kg
Кирпич		2388 kg
Мин. вата		1,332 kg
Ст3		498,2 kg

Fig. 3.12 "Materials using" panel

This panel is designed for the rapid material consumption assessment. It displays a list of materials used in the construction, colors of materials used in EColors by materials' mode, and the estimate of the mass of each material in accordance with a given density. Mass is displayed in units that have been selected in the "Dimension" dialog. If the density of the material is unknown, or set zero, the item is considered to piece goods, and in the "Quantity" column shows the number of parts (eg, gaskets).

3.11. Themes toolbar, customization of toolbars and menus

Program has the ability to switch PASS/EQUIP interface style can be adjusted. To do this, choose the style in themes toolbar.

If the themes toolbar is hidden, you can enable it via View \rightarrow Toolbars \rightarrow Themes toolbar.

In addition, you can customize toolbars, add or remove toolbar buttons, and create new toolbars in **View** \rightarrow **Customize**.

Customize	2	<
Toolbars Commands Keyboar To add a command to a toolbar: drag the command out of this dia Categories:	d Options select a category and alog box to a toolbar. Commands:	
View Options Help All commands New Menu	New Open Close Save Save Save Save	
Description:		
	Close]

Fig. 3.13 Customization window

When customization window displayed, you can drag and drop. Desired toolbar buttons and menu commands with the mouse can be selected in the customization window by dragging and dropping.

3.12. Software settings

To show PASS/EQUIP settings, select "**Options**", then click submenu "**Settings**". The settings dialog box includes the following tabs and commands:

Program settings	×	Program settings ×
General Colors Image quality Update 4	⊳	General Colors Image quality Update 4 0
Number of items "Recently opened files": 5 • Number of significant digits when rounding off: 4 • Scientific notation digit: 3 • Drop-down toolbars Recent command is displayed in the toolbar Show the finite element model Solid model export Number of significant displayed in the toolbar Solid model export Solid model export Calculation of filling volume tolerance: 1 %		System colors Craphic window background Dimension marks color Component marks color Selected component color Filing color Edit Component colors by default Conical transition Elipsoidal head Spherical head Flat head (rower)
OK Cancel Apply		OK Cancel Apply
Program settings General Colors Image quality Manually Setup Faster Fine Smooth transition in the view operation? Dynamic view Wireframe So Number of steps on partitioning of circumferences Smoothing		Program settings X General Colors Image quality Update 4 Automatically, check for updates! Notify me when updates are available but need to update the dong! Update server URL: http://www.truboprovod.ru/update/ Luse Proxy-server Server type: • Server address: Port: User name: Password:
OK Cancel Apply		OK Cancel Apply

Fig. 3.14 Software settings

	1401000
"General" tab	
Number of "Recently opened files"	Set the number of recent documents to be shown in the "File" menu.
Number of digits when rounding	Set the maximum number of digits when rounding numbers in output. For example: if this value is set at "3", 1032.37 will be printed as 1030.
Minimum number of digits for scientific notation	Set the minimum number of digits when scientific notation should be used. For example: if this value is set at "4", 10320 will be printed as $1.032 \cdot 10^4$, while 1270 will be printed as is (depending on rounding; see above). Note: for numbers with notation of less than 10^3 and greater than 10^{-1} , this setting is ignored.
Recent command is displayed in the toolbar	Set recently used command to add model component as default command in the toolbar.
Show finite element model	While working with PASS/EQUIP, the model can be shown as a finite element beam model. This model provides better control over software functions, but can slow down software operation.
Show model fill	Calculated model fill will be indicated by colored dots
Filling calculation (Faster - Fine)	PASS/EQUIP program implements calculation of vessel filling based on a statistical method of calculation of the volume integral, when the model is filled with randomly generated points (Monte Carlo method).This setting controls the number of generated points.The more points, the better the result, but the calculation is longer (in the fastest mode, the accuracy is ~5%).
Export insulation and lining	Establishes, whether there is a need to include insulation and lining, when exporting solid

The Table 3-3 describes the options available within the tabs of the settings dialog.

	model. If lining is set as a plating (Fig. 3.27), it will be always exported.
Export fasteners (bolts, nuts)	Establishes, whether there is a need to include fasteners (bolts, nuts, studs, etc.), when exporting solid model
Geometric kernel mode	Includes multi-threaded mode of operation of some functions of geometric kernel. Working with the model in multi-threaded mode is faster, but in some (rare) cases, the program may fall.
Accuracy control parameter	A numerical value that controls the accuracy of the mathematical functions of the geometric kernel in the construction and calculation of mass-dimensional characteristics. The higher the value, the faster and more accurately the calculation is performed
Accuracy of calculation of filling volume	A value of the relative error of calculation of the filling, when selecting option "Calculation by the specified volume of product." For example, at a value of 1% and specified target volume of 1000 liters, the calculation will be considered successful, if it gives any value in the range of 990 to 1010 liters. A small relative error can extend the calculation for a complex configuration of cavity of the vessel (heat exchangers, etc.)
Materials DB	Allows you to configure the path to the database of user materials located in the centralized access (for example, on a network drive), or use a local database (by default)
"Colors" tab	
System colors	Customizes colors of view window elements
Element colors	Customizes default colors of model components. New model components will be created with this setting. To apply changes to components that were previously created, go to "Components"—"Change color"—"Default

	colors " or use the appropriate icon II .
"Image quality" tab	-
Manual setup	Set image options manually.
Default	Use default values.
Smooth transition in view operations	If selected, changing to selected view (standard views and "Show window" function) is performed smoothly.
Dynamic view	Choose view during dynamic operations: moving, zooming and rotation: "Normal" – aligns with current view; "Beam" – beam model. May significant accelerate view operations on slow PCs. "3D box" –3D box circumferencing the model. Used on slow PCs.
Number of sections for circumferences	Set accuracy for displaying curvilinear surfaces (cones, spheres) by setting the number of sections.
Anti-aliasing	If selected, a full-screen image anti-aliasing is applied to correct imperfections. Requires a high-performance OpenGL video adapter.
"Update" tab	-
Check for updates at each run	Automatically check for updates at the application run
Notify of updates, which require dongle updating	Notify of updates, which can be installed after dongle updating.
Use Proxy-server	Connect with updating server via proxy server (required, if Internet is launched via HTTP through the proxy server)

3.13. Software update system

Regular program updates provide user with the latest version of the software.

An update system can check for updates in automatic or manual mode, as well as download and install updates on PC.

For the proper work of the system a dongle is required. If the dongle is not available, check and installation of updates cannot be performed.

Check for updates is performed automatically at the program launch, or manually from Help \rightarrow Check for updates menu. Automatic check can be switched off in the parameter settings window, tab "Update", check button "Check for updates at each run".

Check and installation of updates is performed up to maximum allowed version number, which is specified in the dongle. Software update system can notify a user of the available updates to the latest versions, which are newer than those allowed by the dongle, if the following item is switched on: "Notify of updates, which require dongle updating" in the parameter settings window, tab "Update". If this message appears, such updates become available after the dongle update to the required version (see i. 2.4).

To install updates, system administrator's rights are required. There can be a request of UAC (Windows User Access Control system) about permission of install.exe launch during installation process. For proper updating, install.exe shall be launched with administrator's rights.

Proxy settings may be required for connecting to update server. The same proxy settings as in a web-browser should be set. In the case of Internet Explorer these settings can be found in the tab **Connections**—**Network properties** of the Internet Options. When being installed, the program offers to use as default settings for these options, installed in the system.

3.14. Measurement unit settings

Before creating a model (and at any other time), you can set dimension and load measurement units. Element properties are recorded using internal units by PASS/EQUIP and automatically re-calculated using these settings. The units selected in these settings are displayed in the output.

Selected units will be used for the current document	when entering o	data and ir	n the derivation of the calculation	results. Units a	re se
Units					
Length	mm	•	Moment	N·m	•
Diameter, thickness	mm	•	Temperature	°C	•
Area	m²	•	Angle	۰	•
Moment of inertia	m4	•	Density	kg/m³	
Stress, pressure	MPa	•	Mass	g	•
Force	Ν	•	Velocity	km/h	•
Program default system	of units	Inte	ernational system of units (SI)		
English system of units	; (U.S.)	Gra	vitational metric system (MKS)		
Gravity acceleration, g O Normal value					
O Tech value	9.807	m/s²			
User value			OK	C-1	

Fig. 3.15 Units settings

Measurement units need not follow the same measurement system (eg, diameter in mm and moment in N·m). Therefore, when viewing equations in output, the final result may not coincide with intermediate calculations, which does not constitute an error (M = 2 [N] * 1000 [mm] = 2 [N·m]). To avoid this, set units from the same measurement system (for example, all linear dimensions are in mm and moment in H·mm).

Buttons with systems of units are useful for quick assignment of the whole complex of dimensions used in the corresponding system.

The "Gravity acceleration" option allows more flexible adjustment of the weight, seismic and inertial loads calculation.

3.15. Data input

You can start building the model from a cylindrical shell or conical transition or from any head. First component is placed from zero position along Z-axis: from left to right for horizontal vessels and from the bottom up for vertical vessels. The following components are joined or inserted to existing model components.

Fig. 3.16 "Components" menu

After you select "Components" Add \triangleright (or press the corresponding icon in the right column of the screen), possible joint or insertion points are determined and you will be asked to select the desired joint or insertion location:

Fig. 3.17 Model building

After the new component is placed, a dialog with all required dimensions, materials and load properties data will be displayed. To input data, press "Enter" in the desired field. Element properties will then be recalculated if necessary.

Some options are common to different components and work in a similar way.

3.15.1.1 Component name

Set component name ("Cylindrical shell No..." is used by default). This name will be used during editing, deleting and assigning of adjoined components, and displaying output.

3.15.1.2 Code

Set the standard to be used for analyzing this component. When you change the selected regulatory documents, input data indications are changed as well, and their values are automatically recalculated if necessary. The code (normative document) can be assigned individually for each component, i.e. GOST 34233.2-2017 for shell and ASME VIII-1 for nozzle. At that, if during calculation the nozzle requires the shell parameters calculated as per ASME, they will be calculated, despite the shell code specified.

3.15.1.3 Temperature

Temperature, at which material properties in operation state are calculated.

3.15.1.4 Design pressure

Internal or external pressure in operation state. Does not include hydrostatic pressure of liquid, if present. Hydrostatic pressure for each component is calculated individually based on fill estimation. Excessive pressure with allowance for hydrostatics is calculated using the following rule (for external pressure p is negative):

 $p' = \pm p + \rho \cdot g \cdot h$, if p is internal, or if p is external but $|p| < |\pm p + \rho \cdot g \cdot h|$;

 $p'=\pm p$, if p is external and $|\pm p| \ge |\pm p + \rho \cdot g \cdot h|$.

3.15.1.5 Design values calculation

To calculate thickness, allowable pressure and other properties without existing the component properties window, use the "**Calculate values**" button. These parameters are defined more simply and approximately, without consideration for filling of the vessel, influence of the neighboring components, etc. The final result of calculation may differ from this value.

3.15.1.6 Material

Material selected from database (GOST 34233.1-2017, PNAE G-7-002-86, GOST R 54522-2011, ASME II Part D, EN etc.), or is set by user, where required properties at operating, test and assembling temperature $(20^{\circ}C)$ must be set.

	n of materi	al										×
						- Select	ion of material					
F	Per the refe	rence G	OST 34233.1-2017	(Vessels and a	pparatus	P	er the fragmen	t of name:				Find
	P.	Name: C	т3			•	Per Ty	pe/Grade:			F	Reset
							Per the mat	erial type:	All			-
	Type of mat	terial: St	teel			Per t	he material (ste	el) grade:	All			•
Mater	rial (steel) g	rade: Ca	arbonic		,	-	Per the workp	iece type:	All			-
Ту	pe of work	piece: Pij	pe		•	•						
	Desig	n life: De	esign life < 100 000 ł	h	•	•						
	Thickness ra	ange: <	= 20мм		,	*						
🗹 Estir	mate [σ]	Act	ual thickness of the v	vall: 10	mm		Design tempe	rature: 2	D	°C		
Materia	al properties	at design	temperature			Material	properties at a	temperatur	e T=20℃			
		Alle	owable stresses, [ơ]	: 154	MPa		Allov	vable stress	es, [σ][20]	: 154	MPa	
			Yield point, Re	250	MPa			Yield po	int, Re[20]]: 250	MPa	
			Strength limit, Rm	460	MPa			Strength lir	nit, Rm[20]]: 460	MPa	
	Modu	ulus of long	gitudinal elasticity, E	: 199000	MPa	M	Iodulus of longit	tudinal elast	ticity, E[20]]: 199000	MPa	
		Linear	expansion factor, d	1 160-005	1 (000	Edit user materials >>						
		Long str	enath limit Rm10^5	1.100-003	1/°C		Edit user n	naterials >:	>			
		Long str	ength limit, Rm10^5 Creep limit, Rp10^5	0 0	MPa MPa		Edit user r	naterials >:	>			
		Long str	ength limit, Rm10^5 Creep limit, Rp10^5	0 0	I/-C MPa MPa		Edit user r	naterials >:	>			
Show	v properties	Long str	ength limit, Rm10^5 Creep limit, Rp10^5 OK	0 0	MPa MPa Copy t	to clipboard	Edit user r	naterials >>	Cance	el		
✓ Show	properties [σ], I	Long str table MPa	ength limit, Rm10^5 Creep limit, Rp10^5 OK Re (Rp1.0, Rp0.2	2), MPa F	MPa MPa Copy t	to clipboard E, MPa	Edit user r α, 1/°C	naterials >> Rm/10^5	> Cance , MPa R	el Rp1.0/10^5, I	MPa	
✓ Show T, °C 20	ν properties [σ], I	Long str table MPa	ength limit, Rm10^5 Creep limit, Rp10^5 OK Re (Rp1.0, Rp0.2 250	2), MPa F	MPa MPa Copy t Rm, MPa 460	co clipboard E, MPa 199000	Edit user r α, 1/°C 0.000011600	naterials >> Rm/10^5	> Cance , MPa R	el kp1.0/10^5, l	MPa	
 ✓ Show T, °C 20 100 150 	r properties [σ], 1 19 14 14	Long str table MPa 54 19	ength limit, Rm10^5 Creep limit, Rp10^5 OK Re (Rp1.0, Rp0.2 250 230 224	2), MPa F	MPa MPa Copy t Rm, MPa 460 435 460	co clipboard E, MPa 199000 191000 186000	Edit user r α, 1/°C 0.000011600 0.000011600	naterials >> Rm/10^5	> Cance , MPa R	el kp1.0/10^5, l	MPa	
 ✓ Show T, °C 20 100 150 200 	(a), properties	Long str table MPa 54 15 15 12	ength limit, Rm10^5 Creep limit, Rp10^5 OK Re (Rp1.0, Rp0.2 250 230 224 223	2), MPa F	MPa MPa Copy t Rm, MPa 460 435 460 505	co clipboard E, MPa 199000 191000 186000 181000	Edit user n a, 1/°C 0.000011600 0.000011600 0.000012600	Rm/10^5	Cance	el Rp1.0/10^5, l	MPa	
✓ Show T, °C 20 100 150 200 200 200 250	(o), (Long str table MPa 54 19 15 12 31	ength limit, Rm10^5 Creep limit, Rp10^5 OK Re (Rp1.0, Rp0.2 250 230 230 224 223 197	2), MPa F	MPa MPa Copy t Rm, MPa 460 435 460 505 510	co dipboard E, MPa 199000 191000 186000 181000 176000	Edit user n a, 1/*C 0.000011600 0.000012600	naterials >> Rm/10^5	Cance	el Rp1.0/10^5, I	MPa	
✓ Show T, °C 20 100 150 200 250 300 300	(a), (a), (b), (b), (b), (b), (c), (Long str table MPa 64 49 45 42 42 31 45 5	ength limit, Rm10^5 Creep limit, Rp10^5 OK Re (Rp1.0, Rp0.2 250 230 230 224 223 197 173	2), MPa F	MPa MPa Copy t Rm, MPa 460 435 460 505 510 520	E, MPa 199000 191000 186000 181000 176000 171000	Edit user n a, 1/*C 0.000011600 0.000012600 0.000012600 0.000013100	naterials >> Rm/10^5	Cance	al 10/10^5, I	MPa	
✓ Show T, °C 20 100 150 200 250 300 350	v properties	Long str table MPa 54 19 15 15 15 15	ength limit, Rm10^5 Creep limit, Rp10^5 OK Re (Rp1.0, Rp0.2 250 230 230 230 230 230 230 230 230 230 23	2), MPa F	мра мра кm, MPа 460 435 460 505 510 520 480	to clipboard E, MPa 199000 191000 186000 181000 176000 171000 164000	Edit user n a, 1/*C 0.000011600 0.000012600 0.000013100	Rm/10^5	Cance	al 2 (p1.0/10^5, k	MPa	
▼ Show T, °C 20 100 150 200 300 350 375 400 400	v properties	Long str table 64 19 15 12 15 15 15 15 15 15 15	ength limit, Rm10^5 Creep limit, Rp10^5 OK Re (Rp1.0, Rp0.2 250 230 230 224 223 197 173 167 167 164	2), MPa F	мра мра кm, MPа 460 435 505 510 520 480 450 411	xx dipboard E, MPa 199000 191000 186000 181000 176000 171000 164000 155000	Edit user r	Rm/10^5	Cance	kp1.0/10^5, k	MPa	
▼ Show T, °C 20 100 150 200 300 350 350 375 400 410 410	v properties [0], 14 14 14 14 13 111 10 9 8 8 8	Long str table MPa 54 15 15 15 15 3 5 5 1	ength limit, Rm10^5 Creep limit, Rp10^5 OK Re (Rp1.0, Rp0.2 250 230 230 230 230 230 24 223 197 173 167 164 150 142	2), MPa F	MPa MPa (Copy t Rm, MPa 460 435 460 505 510 520 480 450 411 392	20 clipboard E, MPa 199000 191000 186000 181000 176000 171000 164000 155000	Edit user r a, 1/*C 0.000011600 0.000012600 0.000013100 0.000013600	Rm/10^5	Cance	al kp1.0/10^5, k	MPa	
▼ Show T, °C 20 100 150 200 250 300 350 375 400 410 420	v properties [0], 14 14 14 14 14 14 14 14 14 14	Long str table 54 55 52 31 55 33 55 1 5 5	ength limit, Rm10^5 Creep limit, Rp10^5 OK Re (Rp1.0, Rp0.2 250 230 230 230 230 230 230 230 230 230 24 233 197 173 167 164 150 142 132	2), MPa F	MPa MPa (Copy t Rm, MPa 460 435 460 505 510 520 480 450 450 411 392 363	E, MPa 199000 191000 186000 181000 176000 171000 164000 155000	Edit user r a, 1/*C 0.00011600 0.000011600 0.000012600 0.000013600 0.000013600	Rm/10^5	Cance	al	MPa	
✓ Show T, °C 20 100 150 200 300 350 375 400 410 425 425	(o), ((o), (15 14 14 14 14 14 14 14 14 14 14 14 19 88 88 8 8 8 8 8 8 7 7 7	Long str table MPa 54 55 53 55 5 1 5 1 5 1	ength limit, Rm10^5 Creep limit, Rp1075 OK Re (Rp1.0, Rp0.2 250 230 230 230 230 230 24 223 197 173 167 164 150 142 132	2), MPa F	MPa MPa (Copy t Rm, MPa 460 435 460 435 505 510 520 480 450 450 411 392 363 343.5	io clipboard E, MPa 199000 191000 186000 181000 176000 171000 164000 155000	Edit user r a, 1/*C 0.00011600 0.000012600 0.000013100 0.000013600	Rm/10^5	Cance	al	MPa	
✔ Show T, °C 20 100 150 200 300 350 375 400 410 420 425 450 450	(o), ((o), (15 14 14 14 14 14 14 14 14 13 11 10 9 9 8 8 8 8 8 7 7 7	Long str table MPa 54 55 53 55 5 1 5 5 1	ength limit, Rm10^5 Creep limit, Rp1075 OK Re (Rp1.0, Rp0.2 250 230 230 230 230 230 230 230 230 230 24 223 197 173 167 164 150 142 132 125	2), MPa F	MPa MPa 460 435 460 505 510 520 480 450 411 392 363 343.5	E , MPa 199000 191000 186000 181000 176000 1771000 164000 155000	Edit user r a, 1/*C 0.00011600 0.000012600 0.000013100 0.000013600	Rm/10^5	Cance	st p1.0/10^5, k	MPa	
▼ Show T, *C 20 100 150 200 250 300 250 300 350 375 400 410 420 425 450 500 500	(o), (o), (o), (o), (o), (o), (o), (o),	Long str table MPa 54 19 15 55 3 15 5 5 1 5 1	ength limit, Rm10^5 Creep limit, Rp1075 OK Re (Rp1.0, Rp0.2 250 230 230 230 230 230 24 223 197 173 167 164 150 142 132 125	2), MPa F	MPa MPa 2009 ti 2009 ti 2000 t	io clipboard E, MPa 199000 191000 186000 181000 176000 177000 164000 155000 140000	Edit user r a, 1/*C 0.00011600 0.000012600 0.000013100 0.000013600 0.000013600 0.000014100	Rm/10^5	Cance	st p1.0/10^5, H	MPa	
▼ Show T, *C 20 100 150 20 300 350 375 400 410 420 425 450 500	(o), (15 14 14 14 14 14 14 14 14 14 14 19 9 8 8 8 8 7 7 7 7 7 7	Long str table MPa 54 19 15 55 15 55 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5 5 1 1 5 5 5 1 1 5	ength limit, Rm10^5 Creep limit, Rp1075 OK Re (Rp1.0, Rp0.2 250 230 230 230 230 24 223 197 173 167 164 150 142 132 125	Picto Co 0 2), MPa F Factor C	MPa MPa MPa 460 435 460 505 510 520 480 450 411 392 363 343.5 ************************************	io clipboard E, MPa 199000 191000 186000 181000 176000 177000 164000 155000 140000	Edit user n a, 1/*C 0.00011600 0.000011600 0.000013600 0.000013600 0.000013600 0.000014100	Rm/10^5	Cance , MPa R	sl kp1.0/10^5, k	MPa	

Fig. 3.18 Standard material properties

Material database consists of two parts: group of standard materials and group of user's materials. First group cannot be changed by user. To edit the second group, "Edit user's materials" shall be selected.

VESSEL STRENGTH ANALYSIS SOFTWARE

User's material	10 Mar		. 1000.010	-		X	
09Г2С КП245	Material name: (09F2C KF1245		Type of material: Steel			
09F2C(265) 09F2C-2 1.0566 P355NI 1 < 150mm	Material (steel) grade: Low-alloy						
1.0566 P355NL1 <150MM 1.0566 P355NL1 <40MM 1.4404				Rupture elongation:	Unknown	•	
1.4571 P355NI 2	Workpiece Typ	pe/Grade T,	Re (Rp1.0, Rp0.2), MPa	Rm, MPa E, M	Pa Alpha, 1	Rm/10^5, MPa	
SA-240 304	Forging 💌	350	161	258 1640	00 0,0000130	5 0	
SA-249 TP304L SA333 GR6	Forging 💌	375	152	244 1640	00 0,0000130	5 0	
TTSt35N	Forging 💌	400	138	220 1550	00 0,0000130	5 0	
	Forging 💌	20	245	378 1990	00 0,0000110	5 0	
	Forging 💌	100	210	336 1910	00 0,0000116	5 0	
	Forging 💌	150	202	323 1860	00 0,0000120	5 0	
	Forging 💌	200	194	311 1810	00 0,0000126	5 0	
	Forging 💌	250	190	304 1760	00 0,0000120	5 0	
	Forging 💌	300	176	281 1710	00 0,000013	L 0	
	•						
	4						
	•					,	
					Delete se	elected lines	
	Low-cycle strength (*)		Physical pr	operties (*)			
Create Paste from clipboard	Coemcient A:	0 M	Pa	Density:	7800 kg	/m3	
	Coefficient B:	0		Poisson's ratio: 0,3			
Add copy Delete	Coefficient Ct: 0		(*) If "0",	substituted values f	or steel		
	Minimum number of	0					
	(*) If "0", defined as pe	r GOST R 52857.0	б ок			Cancel	

Fig. 3.19 User defined material properties

In the user's materials editor the following operations are available:

- Adding new "empty" material ("Create");
- Copying table of properties of any of the existing materials as a whole (the command "Copy to clipboard" in the table), and the subsequent insertion to the user material (command "Paste form clipboard");
- Deletion of material "highlighted" in the list ("Delete");
- Creation of the new material and copying into it the properties of the material, which is "highlighted" by the cursor in the list ("Add copy");
- Deletion of the group of lines with material properties ("Delete selected lines");
- Material renaming (the name of material is edited in the same field);
- Setting of material properties, depending on temperature, thickness, workpiece type, parameters Type/Grade and Class/Condition/Temper (by analogy with ASME II Part D).

After pressing "OK" button a new material will appear in the group "User's materials".

Material properties at given temperature are determined by linear interpolation. Data can be set randomly, depending on the temperature — the program will sort them automatically, in the order of temperature increasing. In addition to steel, cast iron, nonferrous metals and titanium alloys can be entered. A and B material properties and correction factor C_t are set for steel, non-ferrous metals, cast iron and titanium alloys when calculating low-cycle fatigue.

If some value is initially equal to 0, then at calculation in will be set automatically, as per GOST 34233.6-2017, based on the material type and grade.

When you add a new material, its properties are saved both in the database and in the model file. When transferring data file to another PC, PASS/EQUIP will read material data and add it to local database if necessary. If a material with the same name already exists in database, properties from the database and not the model file will be used.

In case of simultaneous access of several users to the publicly available database (for example, when it is placed on a network drive), only the first user can edit (for other users, a message appears about the impossibility of editing at the moment).

3.15.1.7 Standard dimensions

By this command you can select a component from standard items database via clarifying filters (from more general parameters to the particular ones)

3.15.1.8 Negative tolerance

By key you can select this value from database as per different standards. A user can select only those variants, which correspond to the defined nominal thickness of the wall.

Negative tolerance	×
Nominal thickness:	10 mm
Code:	ГОСТ 19903-74 Прокат листовой горячекатаный. Сортамент
Ширина рулона:	500 750 💌
Точность прокатки:	Нормальная точность прокатки
Negative tolerance, mm:	0,8 mm
ОК	Отмена

Fig. 3.20 Negative tolerance

3.15.1.9 Weld strength ratio

This value is set based on weld type and materials used via $\xrightarrow{}$ button.

Fig. 3.21 Weld strength as per GOST

Selection of this parameter depends on the accepted calculation code. Ff calculation is selected as per ASME VIII-1, weld strength factors are assigned concurrently (Fig. 3.22).

Welding efficiency	X			
Longitudinal joint radiography Full radiography per UW-11(a) Type 1 Full radiography per UW-11(a) Type 2 Spot radiography per UW-11(b) Type 1 Spot radiography per UW-11(b) Type 2 No radiography per UW-11(c) Type 1 No radiography per UW-11(c) Type 2 No radiography per UW-12 Type 4 Seamless User defined Longitudinal efficiency: 1	Circumferential joint radiography Full radiography per UW-11(a) Type 1 Full radiography per UW-11(a) Type 2 Spot radiography per UW-11(a,5,b) Type 1 Spot radiography per UW-11(b) Type 1 Spot radiography per UW-11(b) Type 1 Sopt radiography per UW-11(c) Type 1 No radiography per UW-11(c) Type 1 No radiography per UW-11(c) Type 2 No radiography per UW-11(c) Type 2 No radiography per UW-12 Type 3 No radiography per UW-12 Type 4 No radiography per UW-12 Type 5 No radiography per UW-12 Type 6 User defined			
Сігситеrential efficiency: 1 Отмена Fig. 3.22 Weld strength as per ASME				
Strength reduction factor of welded joint				

Fig. 3.23 Weld strength as per PNAE G-7-002-86

3.15.1.10 Insulation and lining

In the presence of insulation, for automatic weight accounting, you should specify its thickness, as well as density or mass (for complex heterogeneous insulation, the average density of the thermal insulation kit is specified). When assigning insulation, the program takes into account the change in the outside dimension of the component, when calculating wind loads.

Thickness and density of insulation can be selected from database according to the current regulations (Fig. 3.26, Fig. 3.27).

Insulation pa	rameters selection	×
Standart:	СП 41-103-2000. Проектирование тепловой изоляции оборудования и трубопроводов	-
Region:	Европейский район РФ 🔹 Location:	•
Material:	THE PROPERTY OF THE CONTRACT CONSERVATION OF THE	•
	Diameter: 18	•
	Temperature, °C: 50	•
	Thickness, MM: 22	•
	OK	

Fig. 3.24. Thermal insulation thickness selection

Insulation parameters se	lection				Х
	Standart: _C	П 41-103-2000. Проектиро	вание тепловой изол	яции оборудования и трубопроводов	-
Type:	eel.				•
	Material: 🧧	UNIN AND MA		8	-
	Applicability:	-70°C+70°C	•	Density, kg/m3: 50	-
		ОК		Cancel	

Fig. 3.25 Thermal insulation density selection

By selecting "Calculate" option, you can receive a lot of components of thermal insulation via the calculation module of the **"Insulation"** program. Input data for calculation are the geometric dimensions of the model component, its temperature, climatic parameters and project data specified in the dialog "Data for calculation of insulation" (i.3.6)
Insulation and lining	×
✓ Insulation	
Insulation name: <enter name=""> Insulation thickness, s(i): 0 mm Insulation density, ro(i): 0 kg/m3 Insulation density, ro(</enter>	
Lining name: <enter name=""> Lining thickness, s(): 0 mm Lining density, ro(): 0 kg/m3</enter>	
ОК	Cancel

Fig. 3.26 Non-metallic insulation and lining

Option "Presents in test/assembly conditions" influences on weight of the component and its outside ("wind") diameter in appropriate conditions.

In the presence of lining, for automatic weight accounting, you should specify its thickness and density.

For some components (shell, head), it is possible to take lining as plating (double-layer steel wall, Fig. 3.27). At that, the calculation takes into account the wall thickening and changes in allowable stresses.

Insulation and lining					×
✓ Insulation					
Insulation name: <enter r<="" td=""><td>name></td><td></td><td></td><td>10 0 0 0 L</td><td>ای</td></enter>	name>			10 0 0 0 L	ا ی
Insulation thickness, s(i): 0 Insulation density, ro(i): 0					
Presents under test condition	s			δα 	
Facing of the inner surface				- <u>"0"0"0</u> "	
O Lining Plating (two-la	ayer stee	0)			
Plating material:					
Ст3		>>			
Plating thickness, s':	0	mm			
Corrosion allowance, c1':	0	mm			
Negative tolerance, c2':	0,8	mm	>>		
Technological allowance, c3':	0	mm			
ок				Cancel	

Fig. 3.27 Insulation and lining suitable for plating

For tube sheets of heat exchangers, two-sided cladding with recalculation of the allowable stresses of the carrying layer is provided (Fig. 3.29).

Double-sided plating	×
☑ Inside plating	ັ້ນ, ບໍ່, ບໍ່, ບໍ່, ບໍ່,
Plating material: 08X18F8H2T (KO-3) >> Plating thickness, s': 3 mm Corrosion allowance, c1': 0 mm Negative tolerance, c2': 0,8 mm >> Technological allowance, c3': 0 mm	C, C
Plating material: 07X13AF20 (4C-46) >>	
Plating thickness, s': 3 mm	
Corrosion allowance, c1': 0 mm	
Negative tolerance, c2': 0,8 mm >>	
Technological allowance, c3': 0 mm	
OK	Cancel

Fig. 3.28 Two-sided cladding

3.15.1.11 Low-cycle fatigue

For low-cycle fatigue analysis, load properties and weld type must be set, depending on adjoining nodes or vessel components.

Low-cycle fatigue calculation as per GOST R 52857.6-2007			
Assembly or element of vessel	Basic element material:	Adjacent element data	
	Cr3 *	Material: Cr3	•
		Temperature, T2:	20 °C
		Thickness, s2:	0 mm
	_		
	Oper	ating pressure amplitude, Deltapj:	0 MPa
		Force amplitude, DeltaFj:	0 N
 Smooth shell 	Ber	ding moment amplitude, DeltaMi:	0 N mm
 Spherical part of dished heads without holes 	Amplitude of temperature difference	e of two neighbouring points on	0 °C
C Heinforcing pads	Amplitude of calculatio	the vessel wall, Delta I Tj	
O Weld edge displacement	between two materia	ls, with different linear expansion	0 °C
O Junction of shells with different thickness		coefficients, DeltaT a	i
Hat head or cover without holes			
Elliptic head Dr. Manufalling of floorer with some officers			
Chall with stiffsning ting			
O Reised part of tariopherical loand or carried shell	-Weld tune or element connection-		
Raised part of tonspherical head of conical shell Raised flat conical head	weid type of element connection	1]
Conical head without transition			-
Londan read with calculation			TAD
Elst lead ar equer with hele. Jube and			× ×
Reised notices and access holes	0.0.1.1.1		
Shell with nozzle without counting ring	 Seamless element 		
O Junction between conical shell and cylindrical shell of fewer diameter	 I-welds with full penetration at 	nd smooth transition	
O Plane flanges welded to the shell	 Butt welds with full penetration 	and smooth transition	
Shell with nozzle with coupling ring	Vessel welds with reinforcing p	late throughout the length	
Corner welds of conical or spherical shell	 Butt welds and T-welds with full 	II penetration without smooth tran:	sition
Connection between unbeaded conical shell and cylindrical shell	 Nozzle welds with reinforcing r 	ing with full penetration	
 Spherical cover with ring 	Reinforced butt weld		
Connection with shell of raised or grooved flat head	 Single-sided welds without reir 	forcing plate, with lack of penetra	tion in the roots
Connection with shell of welded flat heads of other types	O Nozzle welds with reinforcing r	ing with constructive clearance	
O Total roundness as per GOST R 52857.11-2007	Welds of skid boards		
O Dent as per GOST R 52857.11-2007	Nozzle welds with reinforcing r	ing and constructive clearance	
C Longitudinal weld deflection as per GOST R 52857.11-2007	Welds of flat welded flanges w	ith constructive clearance	
O User defined Local stresses factor, eta: 1.5	Welds of plane welded heads		
	Shifted welds (as per GOST B	52857 11-2007)	
	O User defined	Welding tu	ne factor, ksi: 1
	U USU UUIIIUU	W ciding vy	
OK		Cancel	

Fig. 3.29 Local stress factors

3.15.1.12 Defects according to GOST 34233.11-2017

If any defects are found, an additional analysis will be performed. Defect type and properties can be set via button.

Fig. 3.30 Defects as per GOST 34233.11

3.15.1.13 Space in the component

In the simplest case, the vessel has one internal volume, and content properties are specified in the general data (Fig. 3.8). However, in some cases, the vessel has two or more isolated volumes (jackets, heat exchangers, vessels with separating walls). In this case, it is necessary to set parameters of filling of the subsidiary volume.

Filling parameters		×			
Ellipsoidal bulk					
Loading case	Operating fluid name	Operating fluid density p, kg/m³			
Operating conditions		1000			
<		>			
Liquid filling O Gas O Liquid					
Filling ratio		•			
	Filling ratio, ξ: 100	%			
Operating	fluid group as per CU TR 03	32/2013: I 👻 >>			
к	ind of test: Hydrotesting	-			
Test pressure: 1.47 MPa Sulfurated hydrogen fluid Vessel group as per GOST 34233.10: I >> Limit temp. of the operating fluid corr. activity, tnp: 250 °C					
OK		Cancel			

Fig. 3.31 Space in the component

This dialog works similar to the general data dialog (Fig. 3.8), but it is applicable only to subsidiary volume properties.

3.15.1.14 Component section

Some model components require specifying the cross-section of structural elements (posts, rods, braces). In this case, it is necessary to set the parameters of the cross section (Fig. 3.32).

Section parameters		×
Section type Round bar Rectangle bar Tube Square tube	Geometrical parameters assignment As per standart User defined Family: All Standart: GOST 8239-89. Hot-rolled steel flange beams Section marking: 11 10	>
Rectangle tube F-beam H-beam U-beam Unequal (leg) U-beam Angle Unequal (leg) angle Square bai T-bar Rope	Geometrical parameters b 55 mm s 4.5 mm h 100 mm t 7.2 mm Calculated values Cross-section area, F: 0.00117 m ² Moment of inertia, Iy: 1.9438e m4	
	OK	

Fig. 3.32 Section parameters

The following section options are available:

3.15.2. Cylindrical shell

Fig. 3.33 Cylindrical shell

Code - Set the standard to be used for analyzing this component. Calculation as per GOST 14249-89, GOST 34233.2-2017, EN13445-3, ASME VIII-1 is available.

Standard dimensions – with this command one can select a number of preferable shell sizes (or reject it), indicate the intended type of workpiece (flat steel or pipe), and specify the standard of the workpiece. At that, wall diameter and thickness will be set automatically, as well as a negative allowance.

Selection of standard cylindrical shell								×
The preferred range of diameters:	GOST 9617-76 Vessel	s and apparatus. S	Geries of diameters					•
Workpiece type:	Products in coils	•						
Code:	GOST 19904-74 Cold-	rolled flat steel. Gr	ade					•
Diameter (outer - for pipes), mm:	200	 Thickness, mm 	.4	- Widt	h of sheet, mm:	500	•	
Precision/Tolerance/Ident:	Enhanced accuracy			•				
Applicability:	The vessels of non-fe	rrous metals		•				
	ОК				Cancel			

Fig. 3.34 Standard shell selection from database

Loads – if "Define manually" is selected, external loads and how they influence the component must be defined (see below). Input loads are considered only when analyzing this component and **are not transferred** to supports, adjoining components, etc. If "Calculate automatically" is selected, maximum loads are determined automatically based on restraint properties and properties of loads on all model components, weight loads from material and component content, etc.

Bending moment, intersecting force, axial force, design model are determined based on a preliminary analysis of external forces and moments affecting the shell.

In the presence of compression forces on the shell, design model is determined according to GOST 34233.2–2017 (GOST 14249–89), as shown on Fig. 3.35. Lengths of external pressure and axial force are calculated automatically based on the structure of the model as a whole.

User's Manual

Fig. 3.35 Design models for determining the overall shell stability

At calculation of loads using FEM (finite element method), cylindrical shell is modelled by a chain of beam elements of ring cross-section with weightless nodes (Fig. 3.36). Uniformly distributed lengthwise load is applied to each chain element.

Fig. 3.36 Modeling a cylindrical shell with beam elements

3.15.3. Conical transition

Conical transition	×
Conical transition No.1 Code: GOST R 52857.2:2007 ▼ Shell material: Cr3 ▼ Properties Add Inside diameter in the beginning. Dn: 1000 mm Inside diameter in the end, Dk: 2000 mm Nominal thickness, sk: 10 mm Corrosion allowance, c1: 2 mm Negative tolerance, c2: 0.8 mm Technological allowance, c3: 0 mm Shell length, L: 2000 mm	Insulation and lining >> Loads • Calculate automatically • Define manually
Horizontal offset, X0: 0 mm Vertical offset, Y0: 0 mm Longitudinal welded joint efficiency, Fip: 1 >> Circular welded joint efficiency, Fit: 1 >> Calculation temperature, T: 20 *C Defects as per GOST R 52857.11-2007 >> Next >> Car	Design pressure (without hydrostatics), p: Internal O External O MPa MPa Design values calculation
Allowable pressure (at a length L): [p] = 1.09 MPa Effective thickness including allowances (at a length L): sp +	c = 2.8 mm

Fig. 3.37 Conical transition

Component name, code of standards, material, dimensions, weld strength factors, insulation and lining, and load properties of conical transitions are set in the same way as those for cylindrical shells.

Horizontal and vertical displacement is calculated for eccentric conical transitions. Use the Next>>> button to switch to a list of joints with neighboring components. Joint structure is according to GOST 34233.2-2017 (GOST 14249-89).

At calculation of loads using FEM method, conical transition is modelled by a graduated chain of beam elements of constant ring cross-section (Fig. 3.38). To each chain element a uniformly distributed lengthwise load is applied, amount of which depends on the mean cross-section diameter at the given area.

Fig. 3.38 Modeling a conical transition with beam elements

Reinforcement elements in the transition ends are modelled similarly to the cylindrical shell.

3.15.4. Dished head

Ellipsoidal head				
Component name: Elli	ipsoidal hea	ad No.1		
Code:	GOST R	52857.2-2007 -	<u>sı</u>	
Head material:	Dimensior	ns as per GOST >>		
Ст3 •	Propertie	s Add		
Head inside diar	meter, D: 1	1000 mm		
Head wall thick	ness, s1: 1	10 mm	D	
Corrosion allowa	ance, c1: 🤉	2 mm		
Negative tolera	nce, c2: (0.8 mm		
Technological allowa	ince, c3: (0 mm		
Head h	eight, H: 2	250 mm	Insulation and lining >> I ow-cucle fatigue >>	
Straight flange lei	ngth, h1: (0 mm		
Welded joir	nt efficiency	μFit 1 →>	Defects as per GOST R 52857.11-2007	
Calculation temper	ature, T: 💈	20 °C		
Design pressure (without H	nydrostatics	s), p:		
💿 Internal 🛛 🔘 Exte	ernal (0 MPa		
OK		(Cancel Design values calculation	
Effective thickness including allowances: s1p + c = 2.8 mm Allowable pressure: [p] = 2.21 MPa				

Fig. 3.39 Ellipsoidal head

Component name, code of standards, dimensions according to GOST, material, dimensions, weld strength factors, insulation and lining, and load properties for dished heads are set in the same way as those for cylindrical shells.

At calculation of loads using FEM method, dished heads are represented as a pair of weightless beam elements with node in the point, which corresponds to the head gravity centre (Fig. 3.40).Cross-section of elements is considered to be constant and corresponding to the cross-section of the head foundation. Head weight is considered to be lumped and is applied to the centre of gravity (yellow node).

Fig. 3.40 Modeling a dished head with beam elements

Hemispherical head				
Component name: Spherica	nead No.1		SI	
Code: GOS	R 52857.2	2-2007 🔹		
Head material:				
CT3 • Pro	erties	Add		
Head inside diameter,	1000	mm		
Head wall thickness, :	: 10	mm		
Corrosion allowance, o	2	mm	Ē	
Negative tolerance, c	0.8	mm	D +	
Technological allowance, o	3: 0	mm	- 	
Straight flange length, H	: 0	mm	Insulation and lining >> Low-cycle fatigue >>	
Welded joint effic	ency, Fi: 1	>>		
Calculation temperature,	: 20	°C	Derects as per GUST R 52857.11-2007	
Design pressure (without hydrosi	tics), p: —			
💿 Internal 🛛 🔘 External	0	MPa		
OK		Ca	Design values calculation	
Effective thickness including allowances: s1p + c = 2.8 mm Allowable messure: [n] = 4.4 MPa				

Fig. 3.41 Hemispherical head

Torispherical head			×	
Component name: Torispherical Code: GOST F Head material:	head No.1		<u>S1</u>	
Cr3 Propert Inside head diameter, D: Head thickness, s1: Corrosion allowance, c1: Negative tolerance, c2:	Add 1000 mm 10 mm 2 mm 0.8 mm	R		
Technological allowance, c3: Straight flange length, h1: Crown radius, R: Knuckle radius, r1: Calculation temperature, T: Design pressure (without hydrostatic Internal O External	0 mm 0 mm 1000 mm 200 °C s), p: 0 MPa	Welded head type	Seamless Welded from flat bars Welded from segments	
Defects as per GOST R 52857. Welded joint efficiency, Fit	11-2007 >> 1 >>	Cancel De	Insulation and lining >> Low-cycle fatigue >> sign values calculation	
Effective thickness including allowances: s1p + c = 2.8 mm				

Torispherical head type is determined according to GOST 34233.2-2017 and can be seamless pressed, welded from flat bars or welded from segments (Fig. 3.43). Weld strength factors must be set welded heads.

Fig. 3.43 Torispherical head types

3.15.5. Flat conical head

Flat conical head				×
Component nam Head type With simple r With knuckle With reinforc Without reinf	ie: Flat coni Code: GOS einforcement ing ring forcement	Connect	7 • at top ion type iout reinfor	procement \mathcal{B}_{S_2} D
Head ma	iterial: CT3 Sł	neet	>>	>
	Head inside di	ameter, D: 10	000 mm	n
	Head wall this	kness, s1: 10) mm	Wall thickness of adjacent component, s: 10 mm
	Corrosion allow	wance, c1: 2	mm	Insertion material(s2); Cr3 Sheet >>
	Negative tole	rance, c2: 0.	8 mm	a >>
Tec	hnological allov	wance, c3: 0	mm	Insertion wall thickness, s2: 50 mm
Head	wall deflection	angle, o1: 75	5 °	30
	Head h	neight, Hd: 6	7 mm	n
Circula	ir welded joint	efficiency, φt	: 1	>>
Longitudina	l welded joint	efficiency, φp	: 1	>> Daisfarsement thickness at a
Loading	Pressure	Temperatu	re	Reinforcement length, a1: 0 mm
case	p, MPa	Т, °С		Reinforcement thickness, s2: 0 mm
Рабочие условия	0	20		Reinforcement length, a2: 0 mm
,,				Cr3 Sheet >>
				Cylindrical section material (s2):
Insulation and linir	ng >>			CT3 Sheet >>
	OK			Cancel Design values calculation

Fig. 3.44 Flat conical head

Component name, code of standards, material, dimensions, weld strength factors, insulation and lining, and load properties for flat conical heads are set in the same way as those for cylindrical shells. Head type is determined according to GOST 34233.2-2017.

"Nozzle at top" option is used in cases when the modeling of the vessel with a conical transition gives an incorrect result (for example, for horizontal vessels on saddle supports).

3.15.6. Steep conical head

Steep conical head				×			
Component r	name: <mark>Stee</mark> p	conical head No.	1				
Code: GOST 34233.2-2017 -							
		Standard dimen	sions	aı			
Head type Junction with cyli Junction with cyli Junction with cyli Junction with cyli	ndrical shell ndrical shell, v ndrical shell, v ndrical shell, v	with knuckle with ring without reinforcen	nent				
Shell mat	erial: CT3 St	neet	>>	H _d			
Head	d inside diame	eter, D: 1000 I	mm	Section material of (ct): a set			
Wall o	deflection ang	ıle, a1: ₆₀	•	Section material s2 (-2 Sheet >>			
N	ominal thickne	ess, sk: 10 i	mm	Section material sz. CTS Sneet			
Corr	osion allowan	ce, c1: 2	mm				
Neg	jative toleran	ce, c2: 0.8	mm >>	Insertion wall thickness, s11 15			
rechnol	ogical allowan Hood boig	ICE, C3: 0	nm	Insertion wall thickness, s2: 15 mm			
Lopaitudipal w	elded joint ef	ficiency (ap)	mm	Insertion section length, a1: 50 mm			
Circular w	elded joint ef	ficiency, φp. 1	>>	Insertion section length, a2: 50 mm			
	,	1					
Loading case	Pressure p, MPa	Temperature T, °C					
Operating conditio	0	20		Connection type			
Vacuum	0	20		O Without reinforcement			
Defects as per GO	ST 34233.11	-2017 >>		Simple reinforcement S7			
Insulation and lini	>>	R	einforceme	ent thickness, s1: 0 mm			
	ing c c		Reinforce	ment length, a1: 0 mm			
		R	einforceme	ent thickness, s2: 0 mm			
			Reinforce	Copical castion material (c1)			
				Cvlindrical section material (s2): CT3 Sheet			
OK			Cance	Design values calculation			

Fig. 3.45 Steep conical head

Component name, code of standards, material, dimensions, weld strength factors, insulation and lining, and load properties for steep conical heads are set in the same way as those for conical transitions.

"Nozzle at top" option is used in cases when the modeling of the vessel with a conical transition gives an incorrect result (for example, for horizontal vessels on saddle supports).

Component name: Flat head (cover) No 1	Construction of heads and covers	
Code: GOST R 52857.2-2007	⊙1 ○8	
Head material:	O2 O9 a	1 1.
Ctr3 Properties Add	03 010	
Inside diameter of adjacent component, D: 1000 mm		
Wall thickness of adjacent component, s: 10 mm		
Head wall thickness s1: 10 mm	05 012	
Corrosion allowance, c1: 2 mm	O 6 O 13	I
Negative allowance, c2: 0.8 mm	07 014	
Technological allowance, c3: 0 mm	O 15	
Welded joint efficiency, Fi: 1 >>	Insulation and lining >>	Low-cycle fatigue >>
Calculation temperature, T: 20 C		
Calculation pressure, p:		Weld cathetus, a: 20 mm
Internal ○ External 0 MPa		
ОК	Cancel	Design values calculation

3.15.7. Flat head

Fig. 3.46 Flat head

Component name, code of standards, material, dimensions, weld strength factors, insulation and lining, and load properties for flat heads are set in the same way as those for cylindrical shells. Head structure type is determined according to GOST 34233.2-2017 (see Fig. 3.47).

Fig. 3.47 Flat head types as per GOST

Head calculation is now available, as per ASME VIII-1 (versions of structure are indicated in Fig. 3.48).

VESSEL STRENGTH ANALYSIS SOFTWARE

Fig. 3.48 Flat head types as per ASME

Note: don't use this component to model a tank supported by soil (the calculation method does not take into account the supporting conditions and in this case gives an excess margin).

3.15.8. Flat head with ribs

Flat head/cover with ri	bs				×
Component name:	Eat bear	(cover) with ribs	No.1	Adjacent component: Cylindrical shell No.1	
	der cos	T 94999 9 9017		Construction of heads and covers	
	ue: GOS	1 34233.2-2017		Without hub and boss With hub With boss	
Head mate	erial: CT3	Welded pipe	_	\gg Q_0	
Inside diameter of adjacent component, D: 1000 mm			mm	יי יי	
Wall thickness of adjac	Wall thickness of adjacent component, s: 10 mm				
Head	wall thickn	iess, s1: 10	mm		
Corro	sion allowa	nce, c1: 2	mm		
Nega	ative tolera	nce, c2: 0.8	mm	n >>	
Technolog	gical allowa	nce, c3: 0	mm	$S = D_p = D$	
Welded	joint efficie	ency, φ: 1	>>	> Version 1 O Version 2	
Loading	Pressure	Temperature			
case	p, MPa	T, "C		Additional load onto the cover centre, Q0	
Operating	1	20		Automatically Manually	
Steaming	0	110		Rib options (including corrosion)	
Hub/boss options				Rib material: CT3 Welded pipe >>	1
Mal	terial: CT3	Welded pipe		Number of ribs, n: 6	
	Hei	ght, HO: 100	mm	Welded section width, t: 10 mm	
Distance from the	e head surf	ace, h0: 20	mm	Section height, h: 20 mm	
	Wall thickr	ness, s0: 10	mm	···	
	Diame	eter, d0: 100		~	
Allowance to the	wall thickr	ess. cll: o			
and file				Distance to the centroid, e: 13.6 mm	
RID profile type				Sectional area, Ap: 200 mm ²	
●1 ○2 ○3 ○	4			Second moment of area, Ip: 6667 mm4	
05 06 07			-	Rib height, Hp; 20 mm	
Ocurture		∔ • -	ຊັ,	Welded joint efficiency of ribs (m) 1	
Custom	-	~	¥ ^	weided joint enricency of hos, up, 1	
Accortmont > >		• le		Design values calculation	
Assortment >>				OK Cancel	

Fig. 3.49 Flat head with ribs

Rib section type and dimensions are set in the same way as those for <u>stiffening ring</u> of cylindrical shells.

It is possible to attach a child component (cylindrical shell) to the central part of the head, which will automatically determine the load on the center Q. If this load is applied manually, it is taken into account in the model and transferred to adjacent components. It is possible to attach nozzles to the flat part of the head. If the design code takes into account the weakening of the head, the nozzles will be considered as holes.

The available options are shown on Fig. 3.50.

Fig. 3.50 Ribbed head types as per GOST 34233.2

Fig. 3.51 Ribbed head types as per EN 13445-3

3.15.9. Integral flat heads with opening

This component behaves in the construction like a conical transition (creates a difference in diameters). Adjacent elements can be attached to a smaller diameter.

The "Hub" option sets the hub on a smaller diameter (Fig. 3.53)

The "Swap" option sets the orientation of the component along the axis of the vessel.

The "Rim holes" option allows to take into account the weakening by perforation (additional small holes located in the edge zone of the head).

3.15.10. Oval head

Oval cover	-	-	X
Element name: Oval head No.1			⊂Covertype Design:
Attached to: Oval nozzle No.1		n n	
Code: RD 10-249-98			
Cover material:			
	000		∃ €(-{-++}-)-⊕)
Larger inside diameter of nozzle, m.	300	mm	
Minor diameter of the bolts arrangement line. Db:	200	mm	
Corrosion allowance, c1:	2.00	mm	·
Negative tolerance, c2:	0	mm	
Technological allowance, c3:	0	mm	m
Outside bolt diameter, d:	10 💌	mm	
Number of bolts, n:	12		
Wall thickness, s1:	20	mm	
Flange thickness, s3:	18	mm	
	220	mm	
Lalculation temperature, 1:	20	°C	
 Design pressure (without hydrostatics), p: Internal External MPa 			
ОК			Cancel Design values calculation

This component can be attached to oval nozzle.

Fig. 3.54 Oval head

Possible designs of the head according to RD 10-249-98 shown in Fig. 3.55.

Fig. 3.55 Oval head types

3.	15.	11.	Spherical	head	without	knuckle

Spherical unbeaded head/cover					×
Component name: Spherical unbeade	d head (c	over	Construction of	heads and covers]
Lode: GDST R 5285 Head material:	7.2-2007	•	0 2		
CT3 • Properties	Add.				
Inside diameter of adjacent component, D:	1000	mm	03	R _c	
Wall thickness of adjacent component, s:	10	mm	0 4	$s D^{\setminus}$	
Head radius, Rc:	1000	mm			
Head wall thickness, s1:	10	mm	05		
Corrosion allowance, c1:	2	mm	0.6		
Negative tolerance, c2:	0.8	mm	00,		
Technological allowance, c3:	0	mm	Insulation and	d lining >> Head low-cyc	ele fatigue >>
Welded joint efficiencyof spherical segments, Fi: >> Circular welded joint efficiencyof of the head edge, Fik: 1 >> Calculation temperature, T: 20 *C Design pressure (without hydrostatics), p: • MPa					
Defects as per GOST R 52857.11-2007	>>				
OK		Cancel		Design values ca	lculation
Effective thickness including allowances: s1p + c = 2.8 mm Allowable pressure: [p] = 0.667 MPa					

Fig. 3.56 Spherical head without knuckle

Component name, code of standards, material, dimensions, weld strength factors, insulation and lining, and load properties for flat heads are set in the same way as those for cylindrical shells. Head structure type is determined according to GOST 34233.2-2017 (see Fig. 3.57).

Fig. 3.57 Spherical head types

3.15.12. Nozzle

Fig. 3.58 Nozzle

Component name, code of standards, material, dimensions, and weld strength factors for nozzles and padding ring (if present), as well as load properties, are set in the same way as those for cylindrical shells. Nozzle placement is determined based on the type of adjoining component.For cylindrical and conical shells and for conical heads, the nozzle can be radial (Fig. 3.59, a), positioned in the cross-sectional plane (Fig. 3.59, b), offset (Fig. 3.59, c), or placed arbitrarily (Fig. 3.59, d).

Fig. 3.59 Nozzle positioning on the cylinder

For dished heads (including spherical without knuckle), nozzle can be set in the polar or Cartesian coordinate system and can be radial, positioned along vessel's axis or positioned arbitrarily (Fig. 3.59). For flat heads, nozzles must be placed perpendicular to surface.

For a set-in nozzle with the inner surface of the shell, select the "Set-in" configuration and set $l_3=0$.

For an inward forming nozzle (Fig. 3.60) set a negative value of "x".

Fig. 3.60 Inward forming nozzle

Diameter of the hole, which does not require any reinforcement: d0 = 0 mm

Allowable pressure: [p] = 2.2096 MPa Calculation nozzle wall thickness including allowances: s1p+c = 2 mm

Fig. 3.61 Nozzle on the head

Fig. 3.62 Nozzle positioning on the head

Nozzle model is determined according to GOST 34233.4-2017. See Fig. 3.63 for possible models.

Fig. 3.63 Nozzle types

An analysis of insertion point strength from external forces and moments (assigned using the Next >> button) is available for radially placed nozzles in cylindrical and conical shells and dished heads.

Fig. 3.64 Nozzle loads

In this case, in addition to nozzle reinforcement against pressure, an analysis of external forces and moments is carried out according to the selected standard: GOST 34233.3-2017, RD 26.260.09-92, WRC 537(107)/297, EN 13445-3

Loads can be determined automatically during analysis based on the adjoining component or set manually. If "Apply as external" option is selected, input loads on the nozzle will be transferred to all model components.

The "Same loads in all modes" option allows you to avoid filling the whole table of loads individually for each mode if the loads are the same or differ slightly.

Using the "Loads coordinate system" option, loads can be specified in the nozzle coordinate system ("Local") or in the model coordinate system ("Global").

When manually assigning loads, a user can also specify, at what point they are applied (option "Location of loads"). When assigning loads on the nozzle cut, they are automatically recalculated during the calculation, taking into account length l_1 .

For flat head, operability under pressure is evaluated considering presence of passages.

Pay attention to positive and negative signs when setting forces and moments. Positive values correspond to directions indicated on the model. Analytical model displayed in Fig. 3.64 is applicable only for radial nozzles. For other variants of structure it is necessary to control the direction of loads on the displayed model, as in general the coordinate system of nozzle is set at an angle θ first, then at ω , and then at γ or ψ .For instance, a shifted nozzle is resulted from the tilted nozzle, at $\omega = 90^{\circ}$.

At calculation of loads using FEM method, cut-in is represented as several beam elements (Fig. 3.65):

- Element marked with blue joins outer wall of supporting shell with axial line of the shell in the cut-in point. This element is a rigid link.
- Chain of elements marked with red is modelled by weightless ring cross-section beam elements. Weight load is applied to the yellow node placed in the gravity centre of nozzle.

External loads are applied to point 1 or 2, depending on the selected position.

Fig. 3.65 Modeling a nozzle with beam elements

3.15.13. Oval nozzle

Component name (2va rozzá) [16] Draving m Code: GOST R 5257 3-2007 V Cr3 Propertes: Add. Larger innide diameter of nozele, dl: 100 mm Mrozi mide diameter of nozele, d2 100 mm Nozele wall thickness, s1: 10 mm Total allowane to thickness, c2 mm	Mit Orval nozzła Nozzła atładned to: Cylindical shall No.1 modeli of nozzłas Without additona With projectny inward With projectny With pad
Nozzle's exterior part length, II: 100 mm	With beading beadin
Calculation temperature, T: 20 C Post Calculation pressure, p Calculation pressure, p Calculation pressure, p Calculation pressure, p Calculation temperature, T: 20 C Post Post Post Post Post Post Post Post	With insetting CANNG: Gal Lat: Inter angle. Teta: degree degree degreee degree d
WELDED SEAMS: Longitudinal welded joint efficiency, Ft 1 >>> Welded joint efficiency, Ft 1 >>> Minimum sizes of seams: Defla 10 mm OK Cancel Disease of the look which does not sea is any advancement d1 = 0 mm	sivation angle, onega dag no dag

Fig. 3.66 Oval nozzle

Component name, material, dimensions, weld strength factors for nozzle and padding ring (if present), load properties and location are set in the same way as those for ordinary nozzles.

3.15.14. Bend

Bend	
Element name: Bend No.1 Bend material: Cr3 Properties Add.	Bend design as per SA 03-003-07 a - Seamless elbow b - Miter bend c - Welded elbow d - Welded elbow
Bend internal diameter, d: 90 mm Wall thickness, s: 10 mm Corrosion allowance, c1: 2 mm Negative allowance, c2: 0 mm Technological allowance, c3: 0 mm Bend radius, R: 180 mm	
Calculated temperature, T: 20 C Calculated overpressure, p: Internal External O MPa Insulation and lining >>	Bend position
	ncel Estimation of calculation values
Allowable pressure: [p] = 23.83 MPa Calculated bend thickness including allowances: sp + c = 2 mm	n

Fig. 3.67 Bend

Component name, material, dimensions, weld strength factors and load properties are set in the same way as those for cylindrical shells. Bends are connected to nozzles and their adjoining shells. Bend placement is determined by its bend angle.

Bend structure is determined according to SA 03-003-07. Bends can be seamless (Fig. 3.68,a), sectorial (Fig. 3.68,b), welded longitudinally (Fig. 3.68,c) and welded transversely (Fig. 3.68,d).

(c) Welded, when the welds are positioned in the curve plane

(d) Welded, when the welds are positioned along the neutral line

3.15.15. Flange joint

Fig. 3.69 Flange joint

Calculation of flange joints is possible as per RD 26-15-88, GOST 34233.4-2017, ASME VIII div.1, ASME VIII div.2. Comparison of codes for consideration of loads is specified below:

Table	3-4
-------	-----

Code	Pressure considerat ion	Consideration of external loads (F, M)	Consideration of temperature loads
RD 26-15-88	\checkmark	\checkmark	\checkmark
GOST 34233.4-2017	\checkmark	\checkmark	\checkmark
ASME VIII div.1	\checkmark	_	—
ASME VIII div.2		\checkmark	_

<u>Component name, code of standards, material</u>, dimensions and load properties for flanges are set in the same way as those for <u>cylindrical shells</u>. Flange type is determined according to GOST 12820(12821,12822)-80 (see Fig. 3.70).

Fig. 3.70 Flange joint types

Fig. 3.71 - Fig. 3.75 show various flange joint models as per GOST 34233.4-2017.

(c) Tongue-Grove

(d) Ring Type Joint

D<u>cn</u>

 D_6 Dн

D_{cn}

 D_6

 D_{π}

Fig. 3.71 Butt-welded flanges according to GOST 28759.3-90 (a,b,c) and GOST 28759.4-90 (d)

(b) Raised face

(b) Male-Female

(c) Tongue-Grove

Fig. 3.73 Flanges with free rings

Fig. 3.74. Flanges for fasteners according to OST 26-01-396-78

Fig. 3.75 Contact flanges

Surface design of the flange joint at calculation as per ASME VIII-1(2) is shown in Fig. 3.76.

Fig. 3.76 Flange joint types as per ASME

Size of flanges, fasteners and gaskets can be selected from the database of standard parts by selecting the flange joint type and variation and pressing the "Standard dimensions" button. These properties will be set for both flanges.

Selection of standard	l flange joint
Type of flanges	Аппаратные приварные встык по ГОСТ 28759.3
Nominal diameter, Dy	400 Aппаратные приварные встык по ГОСТ 28759.3 Арматурные стальные приварные по ГОСТ 12821-80
Nominal pressure, Py	10 1,00 15
0	20 1,00 25 1,60 32 2,50 40 4,00 50 6,30 80

Fig. 3.77 Standard flange joint selection

To select a gasket from the database, its material must first be selected. Gasket type must match flange type to allow the selection of a standard part.

Selection of standard	l gasket					
Material	Резина по ГОСТ 7338 с твёрдостью по Шору А до 65 единиц	Резина по ГОСТ 7338 с твёрдостью по Шору А до 65 единиц				
Flange type	Приварные встык Flange version Плоские					
Standart	ГОСТ 28759.6-90 Прокладки из неметаллических материалов. Конструкция и размеры	*				
Nominal diameter, Dy	400					
Nominal pressure, Py	0,30					
Version	Исполнение 1					
	ОК					

Fig. 3.78 Standard gasket selection

Dialog window (Fig. 3.78) may differ from the example, as it is determined by the flange joint type, its variation and the gasket material selected.

Bolt (stud) materials and properties can be selected from the database or input manually.

Pressing key <u>More</u>, you can open a dialog of extended properties of flanges and fasteners (Fig. 3.79):

Additional fasteners pa	rameters	×			
Fasteners O Bolts	Outside diameter, d: ds Sectional diameter, db*:	10 >> mm			
(*) Specif	fy 0 to assign automatically as for a	coarse thread			
Groove	Groove diameter, dn:	10 >> mm			
	Material: 35 Bolting	>>			
Ti	ghtening control: No tightening con	ntrol -			
Tighte	ening calculation: GOST 34233.4-20	017 -			
☑ Washer 1 Material:	СтЗ Pipe >>	hш1: 1 mm			
The second is the same					
Washer 2 Material:	Ст3 Pipe >>	hu2: 1 mm - d -			
The same tightening in all design conditions and testing					
ОК]	Cancel			

Fig. 3.79 Fasteners additional parameters

Item **Groove** is used for rods with groove diameter less than the internal threading diameter. Flange insulation ($\boxed{lnsulated}$) affects the temperature of flange joint components.

Selection of option «Control per moment» activates checkbox «Calculation of bolting load without allowance for minimum initial tension of bolts (0.4*[6]*Ab)», in some cases it helps avoiding of excessive reinforcement of flanges.

If you select item "Uniform tightening under operating conditions and tests", bolting load will be taken the same (maximum of all) for all modes.

The "Tightening calculation" option allows you to select an alternative standard for calculating the torque on the wrench.

Flange joint gasket and its properties can be selected from the RD 26-15-88 database or input manually by pressing Add_____.

Database of materials of flanges and bolts is sensitive to the selected calculation code. This is due to the fact that ASME II Part D includes a large volume of data per allowable stresses, which can be used **only** in calculations as per ASME VIII-1(2).

Flange insulation influences on calculation temperatures of flange joint components, weight and material consumption.

Checkbox «Insertion» is used for the part clamped between the flanges (lineblanks, blind, etc.).

Insertion				×
Insertion material:	CT3 Welded pipe		>>	→ Spn
Insertic Blind Closed u Closed u	on thickness, spn: Swivel cap nder operating con nder test condition:	7 ditions s	mm	
Ou	tside diameter, D:	148	mm	
1	fotal allowance, c:	0	mm	
C	enter distance, A:	85	mm	
In	side diameter, d1:	96	mm	I [™] I II
Central	part thickness, sp:	2	mm	<u> </u>
Central	part diameter, d2:	94	mm	Standard dimensions
Distance I	between webs, B:	70	mm	Standard dimensions
	Webs diameter, d:	3	mm	
ОК				Cancel

Fig. 3.80 Insertion

Fig. 3.81 Sealing surfaces

Option "Swap sealing surfaces" allows exchanging "male-female".

The "Flange Thickness" parameter has a peculiarity — having an unsymmetrical configuration of the sealing surface (tongue-groove,, male-female), it can refer both to flange No. 1 and flange No. 2 (depending on the state of the option "Swap sealing surfaces").

External forces and moments can be set by pressing	y Ne	ext>>

Loadings on the flange			×
Loads Calculate automatically Define manually Pressure effect is included	Apply as	external	FR
Loads under operating condition	ons		Mc ML
Axial force, Fr: (under tension the sign is «-»)	0	Ν	
Shear force, Fc:	0	N	Fc FL
Shear force, Fl:	0	N	
Circular moment, Mc:	0	Nm	
Longitudinal moment, MI:	0	Nm	
Torque moment, Mt:	0	Nm	
Loads under test conditions			Ma
Radial force, Fr: (under tension the sign is «-»)	0	N	And the second s
Shear force, Fc:	0	Ν	
Shear force, Fl:	0	N	
Circular moment, Mc:	0	Nm	
Longitudinal moment, MI:	0	Nm	
Torque moment, Mt:	0	Nm	
	ОК		Cancel
	U.S.		cancer

Fig. 3.82 Flange loads

Loads can be calculated automatically during analysis based on components adjoining the flange joint or set manually. If "Apply as external" option is selected, set loads on the flange joint will be transferred to all model components.

3.15.16. Reversal flange

A reversal flanges set similarly to the flange connection.

Fig. 3.83 Reversal flange

Calculation of reversal flanges can be done according to ASME VIII div.1. Available calculation schemes are shown in Fig. 3.86.

Fig. 3.84 Reversal flange types

3.15.17. Bolted heads

Bolted heads include three types - flat, ellipsoidal and spherical without knuckle. They are composed of a flange and the head itself.

Detachable cover		
Сотроненt name: Крышка плоская №1 Code: GOST R 52857.4.2-2007	FLANGE: [Range+cover as per ND >>] [Range as per ND >>] Adjacent component data Adjacent component: [Range type Integral weld neck Sip on flange
Lover options Head materials Tr3 Wall thickness, s1: 22 mm Constain allowance, c1: 22 mm Technological allowance, c3: 0, 8 mm Technological allowance, c3: 0, 8 mm Thickness in gasket place, s2: 22 mm Thickness out of seal, s3: 19 mm Minimum diameter of externitional 460 mm pstt, D2: 555 mm Weided joint efficiency, R: 1 >> Stat for separating wall	Inside dameter. D. 400 mm Wall thickness. s: 10 mm Material: (cr3 ≫> Range options Material: (cr3 pr3) Inside diameter. D. 400 mm Total allowance. c: 0 mm Cutaide diameter. D: 35 mm Range thickness. h: 35 mm Range thickness. h: 35 mm Thickness of hub at small end. s: 6 mm Thickness of hub at small end. s: 16 mm Transition radus. r 7 mm Cylindrical hub length, lc: 0 mm	Range design
Campo Studs No tightering control Mate Material: 35 →> Groove Pea Outside diameter, d' 20 + mm Number, n: 20 Diameter of botted circle, Db: 435 mm	et Ad. Properties. Add. Aria no FOCT 7338 c mepaportixo no llopy A zo 65 e gareau. mensiona sa per ND >> Jutaide dameter. Don; 457 mm Width, bp; 12.5 mm Height, hp: 3 mm Cancel	LOADING CONDITIONS: Design pressure (without hydrotatics), p: © Internal © External © MPa Calculation temperatures: @ Manually © Automatically Cover, Tkp: 20 °C Ranges, Th: 20 °C Clamps, Th: 20 °C Clamps, Th: 20 °C

Fig. 3.85 Flat bolted head

Bolted heads can be adjoined to the same components as welded heads.

There is a possibility of selecting either head assembled together with the flange (components are selected from database, so that the fasteners parameters match), or the flange separately (in case of non-standard heads).

Fig. 3.86 Flat bolted heads as per RD 26-15-88, GOST 34233.4-2017

Fig. 3.87 Flat bolted heads as per ASME VIII-1

Fig. 3.88 Spherical bolted heads as per RD 26-15-88, GOST 34233.4-2017

Fig. 3.89 Spherical bolted heads as per ASME VIII-1

Fig. 3.90 Elliptic bolted heads as per RD 26-15-88, GOST 34233.4-2017

1-6 (a) with partial penetrationc

1-6 (a) with full penetration

Fig. 3.91 Elliptic bolted heads as per ASME VIII-1

3.15.18. Stiffening ring

Stiffening rings can be adjoined to any cylindrical shells in the model. Component name, material, dimensions, weld strength factors and load properties for stiffening rings are set in the same way as those for cylindrical shells. Ring placement on the model is determined by the adjoining component and the distance from the left (head) margin (toward Z-axis). The ring can be placed both inside and outside the shell.

Fig. 3.92 Stiffening ring

Ring type and dimensions are determined by standard cross-sections or input manually. Material corrosion must be taken into account.

Fig. 3.93 Standard sections

Standard cross-section of selected pipe can be selected from the database using the Assortment >> button.

3.15.19. Stiffening rings group

This component provides setting of group of stiffening rings of the same section, located at regular intervals. In calculating, each ring within the group is considered individually. So, the groups of rings can be combined with single rings. These rings are set similarly to the component stiffening ring.

Fig. 3.94 Stiffening rings group

3.15.20. Saddle support

Fig. 3.95 Saddle support

Saddle supports can be adjoined to any cylindrical shells of the vessel casing. Its placement and dimensions determine the analysis of bearing loads on vessel components. The number of supports must be no less than two.

reinforcing pad

Name, code of standards and dimensions of saddle supports are set in the same way as those for cylindrical shells.

A saddle support can have no reinforcements or be supported by a reinforcing pad or stiffening ring.

When supported by stiffening ring, the ring's type, placement and dimensions are set in the same way as those for cylindrical shells (see item 3.15.18). The ring is considered at calculation of cylindrical shell against pressure influence. A user can also consider presence of spacing ribs in the internal stiffening ring (Fig. 3.98). Cross-section parameters of spacing rib can be set by selecting \rightarrow key.

 Io
 Io

 Io
 Io

 Io
 Io

 Io
 Io

 Inside the shell
 Io

 Outside the shell
 Inside the shell

 Io
 Inside the shell

Fig. 3.98 Spacer ribs inside of ring

The "Full girth" option affects the visual display of the support and allows to form a full girth support consisting of two components (in the second component, the option "Flip vertically" must be enabled).

Fig. 3.99 Full girth support consisting of two components One of the vessel supports must be fixed.

At calculation of loads using FEM method, a saddle support is represented as two beam elements (Fig. 3.100):

- Element marked with red connects the pinning point with outside wall of supporting shell. This element has a cross-section typical for a certain version of support.
- Element marked with blue joins outside wall of supporting shell with its axial line. This element is a rigid link.

Node marked with yellow is fixed per 5 degrees of freedom for fixed support (Fx, Fy, Fz, My, Mz) or 4 degrees for sliding support (Fx, Fy, My, Mz). In the process of solving, the fastening in Fz for the sliding support is iteratively modeled by the friction force.

Fig. 3.100 Modeling a saddle support with beam elements

If analysis of the support is required (Support calculation required), support type (one of several standard types), materials and dimensions must be assigned.

"Without calculation" option allows to form a refined version of the support without calculating (only the shell at the point of support is considered).

"Flip horizontally" option flips the support relative to the vertical plane.

Saddle support						X
Code: GOST	34233.5	-2017	•	Star	ndard dimensior	
Type 1	ТуреТуре	2 6	ТуреТуре	3 7	O Type 4	
Support material:	CT3 Pipe			>> [Flip horizont	a
Fnd. concrete:	B10 (M1) /iddle sup Last sup	50) oport tie ł oport tie ł	height, h1 height, h2	>> : 0 : 0	mm	H H
Total	Suppor	t ties thic to tie th	kness, sp ickness, c	8	mm	
Distanc	ce betwe	en suppo Tie	rt ties, ap width, bp	471 0	mm	
	Ba Base	aseplate l aseplate	ength, an width, bn	: 1000 : 250	mm mm	Support welding
Andres halts	Nur	ber of ve	ertical ribs	: 3	mm	Welding around the contour
Michol Boits M Diameter o	laterial: outside/s	CT3 Bolt ectional: Bolt corre	ing 24	0	>> >> mm	Welding contour area, Aw: 23996 mm ² Welding contour section modulus, Ww: 0,0056! m ³
Tight	ening cal Distanc	culation: e betwee	No calcul Number, en bolts, a	ation n: 4 lb: 650	• mm	Fastening in the longitudinal plane Hinge Nigid fastening Specified pliability
Support o	on the ba	se frictior	n constani	t: 0,3	Cancel	Design values calculation

Fig. 3.101 Saddle support options

Type 1

Type 3

Type 4

Type 6

Type 7

Fig. 3.102 Saddle types

The "Anchor bolts" option allows you to set and calculate the fastening of the support to the foundation under external loads (weight, seismic, wind, temperature loads).

The "Support welding" option allows you to set the parameters of the weld between the vertical ribs of the support and the base plate.

The option "Fastening in the longitudinal plane" allows you to control the fastening of the support from the moment in the YZ plane:

- Hinge used for flexible structures or sliding supports if there is a gap between the base plate and anchor bolts, or for fixed supports if the anchor bolts are in a row in the XY plane. Fastening in the YZ plane is modeled by a hinge, no moment occurs in the reactions. This option is recommended by GOST 34233.5 (Fig. 3.103)
- Rigid fastening used for rigid structures or fixed supports rigidly fixed to the foundation. Fastening in the YZ plane is modeled by a rigid anchorage, the shell body is modeled by a rigid element. This option gives the most conservative result, possibly a significant overestimation of the loads.
- Specified pliability used in cases where it is possible to estimate the overall pliability of the fixing (flexibility of the shell wall + pliability of the foundation). Fastening in the YZ plane is modeled by a spring with a given pliability.

Fig. 3.103 Calculation scheme of a horizontal vessel according to GOST 34233.5

3.15.21. Bracket supports of horizontal vessel

This component is a group of two symmetrical supports. It can be attached to the same components of a horizontal vessel as the saddle support.

During calculation, the load on each support is determined individually, upon which the supporting shell is calculated on the impact of the local load applied along the welding contour of the support.

3.15.22. Bracket supports of vertical vessel

Bracket support type is determined according to GOST 34233.5-2017 (see Fig. 3.106).

Fig. 3.106 Bracket supports types

Bracket supports can be adjoined to any cylindrical or conical shell or steep conical head of the vessel casing. Bracket support placement and dimensions determine the analysis of bearing loads on vessel components. Analysis is carried out if 2, 3 or 4 supports are present. If there are 4 supporting lugs, assembly quality must be accurately defined *Accurate mounting*. Name, code of standards and dimensions of bracket supports are set in the same way as those for cylindrical shells. Bracket supports can have no reinforcements or be supported by reinforcing pads.

Key "**Standard dimensions**" activates selection of typical support as per the conditional load, because, according to the applicable codes, not the support itself is calculated, but a vessel wall in the place of its connection.

Supporting legs	×
Component name: Supporting legs	Legs attached to: Head #1
Code: GOST R 52857.5-2007	Type of support
Calculation shell diameter, Dp: 2000 mm	
Head wall thickness, s1: 20 mm	Y - P
Calculation temperature, T: 100 C	
Shell reinforcement Number of supports	
 Without reinforcement Three 	
Reinforcing pad	
Dimensions as per GOST >	
Supporting circle diameter, d4: 1400 mm	
Leg outside diameter, d2: 200 mm	
Leg height, h: 500 mm	
Reinforcing pad diameter, d3: 300 mm	
Reinforcing pad thickness, s2: 22 mm	$s_1 a_3 x \alpha_2$
Angle of arrival, Alpha2: 26.1 degree	
	$d_2 =$
Connects and the surply Takes	
Supports position angle, reta. U degree	$d_4 = d_1$
Baseplate Width, a: 400 mm	D_6
Baseplate length, b: 500 mm	
Material:	
CT3 Properties Add	h
Nominal diameter, d: 10 💌 ^{mm}	
Diameter of bolted circle, Db: 2100 mm	
Calculation pressure (without hydrostatics), p:	
Internal External MPa	OK Cancel

3.15.23. Supporting legs

Fig. 3.107 Supporting legs

Supporting legs can be adjoined to the lower head of the vessel casing. Their placement and dimensions determine the analysis of bearing loads on vessel components. Analysis is carried out if 3 or 4 supporting legs are present. If there

are 4 supporting legs, assembly quality must be accurately defined $\boxed{\mathbf{V}}$ Accurate mounting

Name and dimensions of supporting legs are set in the same way as those for cylindrical shells. Supporting legs can have no reinforcements or be supported by reinforcing pads (see Fig. 3.108).

Supporting leg type is determined according to GOST 26202-84 (see Fig. 3.108).

Fig. 3.108 Supporting legs types

3.15.24. Supporting lugs

Fig. 3.109 Supporting lugs

Head lugs can be adjoined to the lower head, conical shell or steep conical head of the vessel casing. Their placement and dimensions determine the analysis of bearing loads on vessel components. Analysis is carried out if 3 or 4 head lugs are present. If there are 4 head lugs, assembly quality must be accurately defined Accurate mounting

3.15.25. Supporting legs on the shell

Supporting legs can be connected to the lower head or cylindrical shell of vessel casing. There can be any number of legs (not less than 2). Loads in the weld point of each leg are defined automatically from the analysis of statically undeterminable beam system, and are individual for each leg.

Note: The strength and buckling of the legs structure is checked simplistic, like a bar loaded with axial force.

3.15.26. Supporting ring

Fig. 3.111 Supporting ring as per H.Bednar

A ring support can be connected to the cylindrical shell of the vessel casing. The support is calculated as per Henry H. Bednar, "Pressure Vessel Design Handbook" [73].

A calculation according to EN 13335-3 [58], is also available, in which case the support configuration corresponds to Fig. 3.112.

Fig. 3.112 Supporting ring as per EN 13445-3

3.15.27. Lifting lugs

Fig. 3.113 Lifting lugs

Lifting lug can be adjoined to any cylindrical or conical shell of vessel casing, or to ellipsoidal (hemispherical) head. Loads and their direction must be input by user based on operation conditions. Lifting lugs can be placed both in longitudinal and transverse directions on the shell.

Lifting lug with reinforcing plate

Lifting lug with reinforcing ring

Fig. 3.114 Lifting lugs types

Lifting lugs can be either without reinforcement or reinforced by reinforcing plate or ring.

When reinforced by ring, its type, placement and dimensions are set in the same way as those for <u>stiffening rings</u> of cylindrical shells (i.3.15.18). The ring is considered when analyzing pressure influence on the cylindrical shell.

3.15.28. Joining pad

Fig. 3.115 Joining pad

This component is designed for modeling of any joints of external steel structures, consoles, non-standard supports of horizontal vessels, etc, with further calculation of carrying ability of casing wall as per WRC 537(107). Component can be joined to the cylindrical shell or spherical head. Loads for joining are set similar to component «Nozzle», and can be transferred to neighboring components of vessel and its supports.

3.15.29. Trunnion

Trunnion		
Element name: Trunni	on (assembly nozzle) No.1	Туре
Joined to: Cylind	rical shell No. 1	<u> </u>
Code:	RD 26-02-76-88 🔻	
	Dimensions as per ND >>	
Boss diam	eter, d: 325 mm	
Trunnion wall thickr ("0", if solid tru	ness, s1 unnion): 10 mm	$\frac{S_n}{2}$
Distance to fla	ange, L: 483 mm	
Distance to force app	line, I: 438 mm	
Distance between fla ("0", if one	nges, e flange): 90 mm	
Weld strength f	actor, Fi: 1 >>	
Shell reinforcement		
Without reinforcement	Reinforcement pad	Positioning:
Pad diame	ter, Do: 525 mm	Displacement, LW:
Pad thickn	ess, sn: 10 mm	1000 mm
		0 •
Design loads on trunnion		
>> P1H: 12000 N	P2H: 12000 N	
More P1H: 10000 N	P2H: 14000 N	$L_{\underline{w}}$ $Y' \models \theta$
More P1H: 8000 N	P2H: 15000 N	
P_{I}^{H}		
		
	P_{2^n}	
1		
ОК]	Cancel

Fig. 3.116 Trunnion

This component can be joined to cylindrical shell. There are different variants of developing of this structure. If a solid boss is used, $s_1 = 0$ should be

defined. Besides, there are variants with one or two stop flanges. If there is one flange, e = 0 should be defined.

Slinging diagram as per RD 20-02-76-88	×
Vessel weight at lifting, G: 13000 N Distance to the centroid at lifting, IT: 5000 mm Distance to the assembly nozzles, IC: 7000 mm	$\begin{array}{c} l_{T} \\ P_{1} \\ P_{2} \\ l_{C} \\ P_{2} \\ P_{3} \\ P_{4} \\$
ОК	Cancel

Fig. 3.117 Slinging scheme

For this component, export to Nozzle-FEM program is provided.

3.15.30. Additional loads

Besides loads from weight of shells, heads, fittings, etc., additional weight loads (for example, from service platforms) and force loads (for example, from adjoining pipes) can be input. **Fig. 3.119** includes an example of setting additional weight and external loads for horizontal vessels.

Fig. 3.118 Weight loads for horizontal vessels

Lumped mass displacement is available, after which displacement moment will be calculated automatically.

Fig. 3.120 Weight loads for vertical vessels

Fig. 3.121 External loads for vertical vessels

Fig. 3.122 External loads distributed along the component

3.15.31. Vessel fixing

This component is designed for consideration of non-standard fixing of vessel (that cannot be modeled via supports). These can be non-standard supports of horizontal vessels (legs or pillars), rigid steel structure enveloping the vessel (racks, apertures), as well as multilayer vessels (fixed lower nozzles act as supports).

Vessel fixing			×
Fastened component:	Cylindrical shell No.1		Y
Fixing name:	Vessel fixing No.1		
Distance from component e	dge, lo: נספי mr	n	
🗹 Linear along the X	Pliant:	0 mm/N	
🗹 Linear along the Y	Pliant:	0 mm/N	
🗹 Linear along the Z	Pliant:	0 mm/N	Coordinate system XYZ
🗹 Angular around the X	Pliant:	0 °/N∙m	Global O Local
🗹 Angular around the Y	Pliant:	0 °/N∙m	
🗹 Angular around the Z	Pliant:	0 °/N∙m	Presents under mounting condition
	ОК		Cancel

Fig. 3.123 Vessel fixing

It is necessary to specify fixed degrees of freedom in a global or local system of coordinates (the local system corresponds to the parent component's coordinate system). Results of calculation will be appropriate reactions of supports.

To simulate rigid fixing by the corresponding degree of freedom, it is necessary to set the pliant equal to 0.

3.15.32. Service platform

The platform can be installed on the cylindrical parts of vessel casing, as well as on the supporting skirt of the column.

Service platform	×
Component name: Service platform №1	Attached to: Cylindrical shell Nº1
Distance from component edge, lo: 0 mm	
Start angle of platform, Teta0: 0 degree	Y_{i,θ_i}
Platform's sector angle, Teta1: 360 degree	
Platform width, I1: 800 mm	
Platform height, h1: 1000 mm	
Bracket length, I2: 800 mm	
Bracket height, h2: 1000 mm	
Clearance between platform and shell, delta: 50 mm	
Specific weight of platform, Ga: 0.002 MPa	
✓ Ladder availability	
Angle of positioning, Teta: 0 degree	
Y Slope, I: 3000 mm	Aerodynamics of platforms(as per As per GOST R 51273-99)
Weight per unit length: 0.3 N/mm	Approximately OPrecisely
Width: 600 mm	
	A As
Presents under test conditions	
Presents under operating conditions	Aerodynamic coefficient, K: 0.85
	Surface area of structure, A: 4640000 sq. mm
ОК	Cancel

A variant of the platform for the horizontal vessel is a rectangular flooring, optionally fenced with railings. Weight of the platform and its wind load are applied to the horizontal shell in a given number of points (parameter "Number of rows of supporting lugs").

Fig. 3.125 Service platform of horizontal vessel

Combination of railings on the four sides can be arbitrary, which makes it possible to form a multi-layer floor from several platforms.

Fig. 3.126 Service platforms group

The specific weight G_a is assigned according to SP 20.13330 [35] and includes the load from the material, snow, equipment, people, etc. This load is considered to be evenly distributed over the sector of the site and is used in calculations (when determining the natural period, load on the supporting shell, etc.).

The parameter "Weight of material" is not used in strength calculations and is required only for calculating material consumption.

3.15.33. Column components

Packings, service platforms, trays, concentrated masses and external loads can be adjoined to cylindrical shells of columns. Their position, dimensions and mass (forces) are added to loads and considered in vessel strength and stability analysis under wind and seismic loads.

Fig. 3.127 Packing

When calculating the weight load, the packing is considered as a complex component containing:

- welded part weighing G_w (taken into account in any design mode);
- removable part weighing G_r-G_w (taken into account in the design mode according to the options "Present under mounting/test conditions");
- liquid (if any) in the form of a conditional cylinder weighing $\rho_1 \cdot \pi \cdot D_1^{-2}/4 \cdot h_1 \cdot \xi_1$ (taken into account in operating conditions);
- filler (catalyst) in the form of a conventional cylinder weighing $\rho \cdot \pi \cdot D_1^2/4 \cdot h_1$ (always taken into account in operating conditions, in the mounting/test conditions according to the specified options)..

The table of materials used is formed taking into account the materials assigned to the welded and removable part.

Fig. 3.128 Tray block

When calculating, a group of trays is considered as several lumped masses attached to a parent component with an equal pitch. The weight load of each tray is taken into account in the same way as for the "Packing" component.

When rendering the model, the trays are displayed conditionally. If necessary, you can combine them with the "<u>Custom Equipment</u>" component, preparing a tray of any required design in any CAD system.

Fig. 3.129 Lumped mass

External loads onto app	aratus		X
Applied to:	Cylindrical shell Nº1		
Component name:	External loads onto apparatus Nº1	_	i
Distance from component	edge, lo: 0 mm		
	Presents under test conditions	Presents under operating condition	
-Loads under operating con	dition Loads under test conditions		Fy
Fx: 0 N	Fx: 0 N		
Fy: 0 N	Fy: 0 N		
Fz: 0 N	Fz: 0 N		
Mx: 0 Nm	Mx: 0 N m		M_{x} F_{x}
My: 0 N m	My: 0 Nm		1
<u></u>			
			2
	OK		Cancel

Fig. 3.130 External loads

3.15.34. Skirt support

Column vessel suppor	t					×
Column vessel supp	ort Supporting assembly	y Skirt fittir	ngs Supporting strue	ture		4 Þ
Component name:	blumn vessel support N	o.1 Sta	andard dimensions	Attached to: Ellipsoidal	head No.1	
c	Code: GOST 34233.9-201	17 •		rical O Conical	Composite	
Pa	rent inside diameter, D: 1	1000 mm			S	
Up	per base diameter, DO: 1	.000 mm			-	
Dist. from the botto	m edge to the skirt, hb: e	51.23 mm			~	
	Base diameter, D1: 1	1600 mm		$D_0 \rightarrow$	<u>~0</u>	
т	otal support height, h0: 1	1500 mm	l literation in the second sec		- 1	
	Weld cathetus, Δ: 1	1 mm				
Cylindrical section of	support				Ni 🕴	
Section mad	ction wall thickness, s0:	>> 6 mm				
	orrosion allowance, c1:		⊦-≖	D	■	
	Negative tolerance, c2:			D_6		
Terh	nological allowance, c3:					
Circular we	Ided joint efficiency, m:					
			Insulation	and lining >> Le	ngth calculation model >>	
Copical section of cur	pport		Transition	section Transition se	ction data >>	
Section mate	erial: CT3 Welded nine	>>	Calculation	n in lifting conditions >>		
Dectorringe	Section height, hk: 1	000 mm				
Se	ction wall thickness, sk: 1	16 MM				
Co	prrosion allowance, c1k:	n mm				
N	legative tolerance, c2k:	, mm	>>			
Techn	ological allowance, c3k:	, mm				
Circular web	ded joint efficiency, φk: 1	>>				
Loading case	Cylindrical section temperature T, "C	C ter	Conical section nperature Tk, "C	Supporting assembly temperature, *C		
Operating	20		20	20	•••	
					OK	Capcel Apply
					UK	Concor Mpply

Fig. 3.131 Skirt support

Skirt support can be adjoined to the model's lower head or to the cylindrical or conical casing shell. Support shell type is determined according to GOST 51274-99 (see Fig. 3.132).

User's Manual

Fig. 3.132 Skirt types

There is a possibility of express temperatures estimation for the support components. To do this, click the [...] button in the table of loading cases. In the dialog that appears, you can select a method for the temperatures estimation (Fig. 3.133).

Calculation temperature estimation			×
Code: Gorbachev MV "Heat and mass transfer"	NSTU, 20	015 🔹	STO 3
Heated end temperature, T1:	20	°C	
Heat transfer coefficient from the side surface, a:	100	$W/(m^{2}K)$	Γ_{I}
Heat transfer coefficient from the end surface, a1:	1000	$W/(m^{2}K)$	
The coefficient of thermal conductivity of the section material, $\boldsymbol{\lambda}:$	20	W/(m·K)	
Ambient temperature, TO:	20	°C	$\chi = -\alpha$
OK			

Fig. 3.133 Skirt components temperature estimation

A transitional section (skirt) with a material different from the support material can be input. To set the transitional section's dimensions and material, select \checkmark Transition section and press Transition section data >>

Transitional component of support								
Material of support's transitional:								
03X18H11 🛛 🔽 Prope	erties Add							
Section height, hn:	500 mm							
Section wall thickness, sn:	10 mm							
Corrosion allowance, c1:	2 mm							
Negative allowance, c2:	0.8 mm							
Technological allowance, c3:	0 mm							
Circular welded joint efficiency, Fi: 1 >>								
Calculation temperature, Tn:	300 Cancel							

Fig. 3.134 Transitional section

Option Calculation in lifting conditions enables performing of supporting shell calculation of strength and stability against loads arising during mounting of the column, and selecting of additional furnishings. For this purpose, additional data should be defined (Fig. 3.135).

Fig. 3.135 Lifting scheme

Supporting assembly type and dimensions can be input by pressing Next >>

VESSEL STRENGTH ANALYSIS SOFTWARE

Column vessel support	×
Column vessel support Supporting assembly Skirt fittings Support	ing structure d D
Code: GOST 34233.9-2017	• <u>b</u> 5
◯ Type 1 ◯ Type 1a ◯ Type 2 ◯ Type 3 ◉ Type 4	the head of the he
Assembly elements material: CT3 Welded pipe	
Thickness of the lower supporting ring, s1: 36	mm Alexandre
Corrosion allowance, c1: 2	
Negative tolerance, c2: 0.8	mm >> /////////////////////////////////
Technological allowance, c3: 0	
Width of the lower supporting ring, b1: 190	
Emerging width of the lower ring, b2: 140	mme
Availability of reinforcing pad Width of the upper supporting ring, b4: 360 Minimum distance between two adjacent ribs, b5: 160 Thickness of the upper supporting ring, s2: 30 Thickness of the rib, s4: 1.6	
Height of supporting unit by	
Bara plate	Ancher holits
Concrete: B10 (M150)	Material Con Delice
Consider foundation pliability	Pierceter exterior / costion by a second sec
Minimum inertia moment of foundation base, IF: 1300000000 mm4 >>	Number, n: 12
Concrete foundation area, AF: 4000000 mm ²	Diameter of bolted circle, Db: 1760 mm
Irregularity ratio of soil compression, CF: 0.06 N/cub.mm >>	Bolt corrosion, cb: 0 mm
	OK Cancel Apply

Fig. 3.136 Supporting assembly

Supporting assembly type is determined according to GOST R 51274-99 and GOST 24757-81 (see Fig. 3.137).

Type 3

Type 4

Type 5

Fig. 3.137 Supporting assembly types

Option \square Consider foundation pliability enables considering influence of soil flexibility on natural vibrations period of column. At the active check, it is necessary to define area and inertia moment of foundation base, as well as irregularity coefficient of soil compression. To define geometric characteristics, there is an assistant button, which enables automatic calculation of typical foundation parameters.

Automatic calculation	of the foundation geome	etric paramet	ters 🛛 💌
Foundation type			
Square			b
Rectangular			
Circular	Side, a:	5000 mm	
 Orbicular 	Side, b:	3000 mm	
	Minimum inertia moment:	1125000000	0 mm4
	Area:	15	sq. m
			1
ОК	Car	ncel	Design values calculation

Fig. 3.138 Foundation geometric parameters

When the check is off, the foundation is modeled as built-in.

Supporting shell fittings can be input by pressing Next >.

Column V Column	vessel suj n vessel si	pport upport Suppor	ting assemb	y Skirt fittings	Supportin	g structure					4	×
Fittings n Cr3 We	Name Add fitting naterial: elded pipe ngs reinfor welding ex	Inside diameter, d, mm	Wall thickness, sd, mm Dele	Distance from the base plate, hd, mm	Height, hu, mm	Angular position, θ,	Length of external part, II, mm	Length of inside part, 13, mm	ţ.			
									ОК	Cancel	Apply	

Fig. 3.139 Supporting shell fittings

The option "Fittings reinforce the cross section" controls the way of defining the skirt cross section characteristics (when this option is enabled, the cross section is formed taking into account the walls of the fittings).

Support structure (pedestal), if present, can be input by pressing \bigvee Availability of supporting structure).

VESSEL STRENGTH ANALYSIS SOFTWARE

Column vessel's support			×
Column vessel's support Column vessel's support [Supporting assembly [Support Availability of supporting structure Geometry of supporting structure Cylindrical shell Conical shell Rigid weightess structure Supporting structure material:	ng shell's fittings Supporting Plate Upper plate	g structure	4 b
B25 Properties Add Number of rods, N: 6 Supporting structure height, H: 20000 mm Upper circumscribed cirde diameter, D: 2000 mm Lower circumscribed dirde diameter, D: 2000 mm Couplings on each facet Medial junction of diagonal rods Height borders of bonds placement Lower level, h1: 100 mm Upper circumscribe Orientation of elements Lugs Normal Tangental Tangental 	Filling with bonds Absent Beam Brace type 1 Brace type 2 Brace type 2 Brace type 3 Cross with upper beam Cross with lower beam Cross with how beams Cross with two beams	Brace with lower beam type 1 Brace with lower beam type 2 Brace with lower beam type 3 Brace with lower beam type 4 Brace with upper beam type 1 Brace with upper beam type 2 Brace with upper beam type 4 Brace with upper beam type 1 Brace with two beams type 1 Brace with two beams type 2 Brace with two beams type 3 Brace with two beams type 3 Brace with two beams type 4 Brace with two beams	
Braces Along the row Across the row Across the row Across the row	Cross sections Lugs: Beams: Braces:	Range >> Range >> Range >>	Cancel

Fig. 3.140 Column support structure

The support structure can be in the form of cylindrical or conical shells or metal structure with a foundation of vertical or tilted poles.

Variant «Rigid weightless structure» is designed for cases, when pedestal parameters are not known yet, but its height is known. In this case, the pedestal is modeled by rigid link and causes no influence on the vibration period. Wind loads are calculated with consideration the pedestal height.

Fig. 3.141 Support structure types

neral data								
Componer	Component name: Heat exchanger No.1 Code: GOST 34233.7,2-2017 •			Presence of baffles in tubular space Maximum tube span between tubesheet and baffle, ITR: 400 mm			*	
Shell Or Corro Neg Technolo Longitu Cir Asse Insulation an	Alteriat Dr3 We Inside diameter, D Wall thickness, ssion allowance, i yative tolerance, o gical allowance, i Length, final weld strengt cular weld strengt mbly temperature d lining>>	elded pipe Standard dimensi D: 1000 mm 0: 1020 mm 0: 1020 mm 0: 1020 mm c2: 0.8 mm c2: 0.8 mm c4: 0.0 mm c5: 0 mm c4: 0.0 mm c5: 0 mm c4: 0 mm c4: 0 mm c5: 0 mm c5: 0 mm c5: 0 mm	>> Maximu ons Anc Bafile Calculat () Man	tube span betv m tube span betv Baffl Baffle material: hor pins material: s rest on the casin icon pressure on th ;pR=mack[]T[ipM ually; pR = ()	Ibane, III: IBAR, III: 28: 400 e thickness: 10 C73 Welded pipe 35 Bolting 9 e tube sheet LipT-pMB MPa pR,test I	mm mm >>	First tubesheet clamp Prist tubesheet clamp Prist tubesheet clamp Prought finang pint Prought finang pint Pro	IR Interpretation Interpretation Interpretation Second ubersheet clamp By welding into the caring Through findings interpretation Record ubersheet welded to interpretation Should not dirage tubersheet welded to Should not the shell C Broot bercheat welded to Should not the shell
Loading		Shell-side, shell			Tube-side, tub	es	end shell Tubesheet welded in flange Tubesheet welded between flange and shell	the end shell Tubesheet welded in flange Tubesheet welded between flange and shell
case	pM. MPa	Tempera Design Ts	ture, "C Mean-t	pressure pT. MPa	Tempe Design Tt	rature, "C Mean_tT	– <i>K</i> 12	K 12
Operating	1	60	40	1	60	40	$ \xrightarrow{\Lambda_{\sigma}=1,/} $	$ \lambda_{\sigma} = 1, /$
Steaming	0	120	100	0	120	100		
Shell	side space filling	>>			Tube-side space fil	ing >>	<i>K_e=1,7</i>	K _e =1,7

3.15.35. Heat Exchanger with stationary tube plates

Fig. 3.142 Heat Exchanger Data

Heat exchanger casing wall temperature is used to determine allowable stress on the casing. Average casing wall temperature is used to determine the linear expansion and elasticity factors. Insulation and lining can also be input.

<u>Operation environment properties</u> in tubular space are determined by the heat exchanger's parent component or (if there is no parent component) using the "General Data" setting. <u>Operation environment properties</u> in inter-tubular space are considered when calculating weight of the casing's daughter components.

Casing and tube plate joint structure according to GOST 34233.7-2017 (RD 26-14-88) are shown in the Fig. 3.143.

Heat exchanger design according to ASME VIII-1(2) is possible. In this case, design options are shown in Fig. 3.144. For a heat exchanger according to ASME, the "Kettle Shell Exchanger" option is available; in this case, the boiler parameters are set on the "Expander 1" tab.

Fig. 3.143 Tube plate joints

UHX-13.1 (c) UHX-13.1 (d)

Fig. 3.144 Tube plate fixing as per ASME VIII-1

Properties of the <u>tube plate joint</u> can be input by pressing $\boxed{\text{Next} >}$ (see i.3.15.36).

3.15.36. Tube plate joint

First tubesheet connection		
Flange of chamber	Flange of shell	Flange type
Material: CT3 V Properties Add	Material: CT3 Properties Add	
Internal diameter, D: 1000 mm		Flanges version
Total allowance, c: 0 mm		Flat Cug-socket Ost shedree
External diameter, Dn: 100 mm	External diameter, Dn: 100 mm	Occanedron
Flange height, h2: 10 mm	Flange height, h1: 10 mm	$l = h_2 h_n h_l$
Conical sleeve length, I: 100 mm		
Thickness of sleeve's cylindrical part, s0: 10 mm		
Thickness of sleeve's conical part, s1: 0 mm		
Transition radius, r: 0 mm		
Length of sleeve's cylindrical part, Ic: 0 mm		
Adjacent element of chamber	Tubesheet	
Adjacent element:		
Internal diameter, D: 0 mm	Tubesheet thickness, sp: 10 mm	
Wall thickness, s: 0 mm		
Material: CT3 Voperties Add	Total allowance, cp: 2 mm	
Fasteners	Calculated temperature, Tp: 20	Calculated transmitters of flamma Tr.
Bolts Studs Tightening control		Calculated temperature or hanges, 1: 20
Material: Stud groove	Adjacent element of the shell	Insulated flanges
35 Properties Add	Adjacent element: Heat exchanger shell	
Outside diameter, d: 0 😽 mm	Internal diameter, D: 1000 mm	
Number, n: 0	Wall thickness, s: 10 mm	
Diameter of bolted circle, Db: 0 mm	Material: CT3 Properties Add	Flange dimensions as per GOST >>
Gasket Material Properties Add		
Резина по ГОСТ 7338 с таёрдостью по Шору А до 65 единии		
		Take a shell flange as a chamber flange
Mana diseator Don a		
With her -		
Thirkness ho: o		
	,	
	l	< <u>Н</u> азад Далее > Отмена Справка

Fig. 3.145 First tube plate joint

If a tube plate is connected through a flange joint, data are input in the same way as those for a flange joint, according to GOST 34233.4-2017 (RD 26-15-88). Standard flanges can be selected.

Option "Transitional shell" is available for all variants of design of the tube sheet. When this option is activated, an additional window appears with parameters of the transitional shell (bushing), Fig. 3.124.

Transitional shell extended parameters			×
Material: CT3	>>		
Inside diameter, D: 1000	mm		24
Thickness, s1: 20	mm		
Corrosion allowance, c1: 2	mm		
Negative tolerance, c2: 0	mm	>>	
Technological allowance, c3: 0	mm		
Length, I1: 200	mm		,
Design temperature, T1: 20	°C		Insulation and lining >>
ОК			Cancel

Fig. 3.146 Parameters of the transitional shell

Properties of the second tube plate joint can be input by pressing Next >. Data on the second tube plate is assigned equally to the first tube plate. You can quickly copy data from the first tube plate by pressing button "Accept the second connection as the first". <u>Tube bundle properties</u>, properties of tube mounting within the plate and pass partitions (if present) can be input by pressing <u>Next</u> > (see i.3.15.37).

3.15.37. Tube bundle properties

Fig. 3.147 Tubes bundle with plates

Position of passages in the tube plate can be set manually or automatically. To set position automatically, position angle of opening axis, opening spacing and diameter, radius of tubular space, and heights of upper and lower sections must be input. Properties such as the number of openings, distance to the most distant pipe's axis and the maximum diameter fitting within the tubeless area will be calculated automatically.

The position of symmetry axis of tube bundles can be changed by selecting Offset (Fig. 3.148)

90 degrees

60 degrees

Fig. 3.148 Holes layout

At non-standard parameters of tube bundle, it is possible to compose it in the interactive <u>designer</u> mode.

Constructions of tube holders in the sheet as per GOST 34233.7-2017 (RD 26-14-88) are shown on Fig. 3.149

Smoothly rolled

Smoothly rolled, with seal welding

Rolled in one groove

Rolled in two and more grooves

Rolled in one groove, with seal welding

Rolled in two and more grooves, with seal welding,

Welded without rolling

Fig. 3.149 Tube holders in the sheet as per GOST 34233.7-2017

At calculation of the heat exchanger as per ASME VIII-1, possible types of holders are shown on Fig. 3.150.

Fig. 3.150 Tube holders in the sheet as per ASME VIII-1

Optionally it is possible to add <u>bellows</u> (i.3.15.38) and (or) <u>expander(s)</u> (i.3.15.39) on the casing.

The heat exchanger will be displayed after all required data are input and saved by pressing Finish. Heat exchanger properties can be edited through a tabbed dialog box.

3.15.37.1 Handling with tube sheet designer

Designer enables creation of the tube bundle and calculation of its properties, when placing the tubes by method that is not described in the i. 3.15.37. To

activate it, select the "Custom" option in the toolbar "Position of holes" A window specified in Fig. 3.151 will open.

Fig. 3.151 Tube sheet designer

For window with the tube sketch, the following operations are available:

- Image scaling- by mouse wheel;
- Sketch moving press and hold down left button of the mouse, and move it;

Commands and parameters:

By triangles

Each row of holes is shifted relative to the previous one for a half of the horizontal pitch

By circles Holes are arranged in concentric circles, holes on one circle are spaced with equal pitch, rounded to an integer number of holes

Horizontal and vertical pitches of rows arrangement

 R, h_1, h_2, h_3, h_4

t_p, t_y

Enables creation of zone, beyond which arrangement of pipes is excluded

Number of flows, configuration Enables creation of pipeless zones for separating walls, for typical configurations of multiflow heat exchangers

x ₀ , y ₀	Provide more precise positioning of the tube bundle, belonging to the 1 st flow, if the automatic arrangement does not furnish the desired result	
U_L	Distance between axis for pipes in the area of the 1 st separating wall	ų
D_L	Distance from axis of tube sheet to axial line of 1 st separating wall	
Transpose	90° rotation of the created tube sheet	
Create a tube with hole	If the tube already exists at the point with selected coordinates, than nothing happens, otherwise, the point gets an attribute "tube"	

Delete tube, remain hole	A hole will be included in calculation of the sheet peripheral zone, but the tube will be excluded from calculation of axial force on the casing.	⊙
Delete tube and hole	There is no hole in this point, it cause no influence on calculation of peripheral zone (used for creation of tubeless zones)	×
Create anchor stud	A hole will be included in calculation of the sheet peripheral zone, but the tube will be excluded from calculation of axial force on the casing	•
Update	Rebuilding of tube bundle is performed (coordinates of points, where the holes will be placed, are outlined)	
Reset	All additional signs of points are cleared	

3.15.38. Heat Exchanger with expansion bellows on the casing

To include the expansion bellows in heat exchanger model, select an appropriate checkmark in the "Expansion bellows" tab (Fig. 3.152).

Fig. 3.152 Expansion bellows

At calculation of heat exchanger as per GOST 34233-2017, bellows type with casing is determined according to GOST 30780-2002 (Fig. 3.153).

At calculation of heat exchanger as per ASME VIII-1, possible design variants of expansion joints as defined according to section MANDATORY APPENDIX 26 (Fig. 3.154).

Fig. 3.154 Design variants of expansion bellows as per ASME VIII-1
3.15.39. Heat Exchanger with expansion box in the casing

To include the expansion box in heat exchanger model, select an appropriate checkmark in the "Expansion box" tab (Fig. 3.155). In the presence of expansion box on the expander, its parameters are set similarly i. 3.15.38.

Fig. 3.155 Expansion box

When calculating the heat exchanger, the flexibility of the expansion box is taken into account. If the expansion box is made with bellowed sides, use this option (Fig. 3.156).

Fig. 3.156 Expansion box with bellows on the sides

Do not use the "Expansion box" option to define the distribution manifold (without cutting the casing section under it) - for this, use the "Cylindrical jacket" component.

3.15.40. Heat Exchanger with U-shaped tubes

Data input is similar to heat exchangers with stationary tube plates. The tube plate must always have a pass partition and tubes must be arranged symmetrically.

Tube sheet for this heat exchanger can be performed similar to i. 3.15.35.

Besides, as per GOST 34233.7-2017, a variant of tube sheet clamped between the flanges is additionally available (Fig. 3.157)

Fig. 3.157 Tube sheet between flanges

In accordance with ASME VIII-1, additional configurations are available (see Fig. 3.158).

Fig. 3.158 Tubesheet types according to ASME VIII-1

The "Electric immersion heater" option allows the calculation of the heater base plate as a perforated flat cover.

3.15.41. Heat Exchanger with Floating Head

Data input is similar to heat exchangers with stationary tube plates. Properties of the floating head are input instead of second tube plate (Fig. 3.159).

Fig. 3.159 Floating head

At calculation of heat exchanger as per GOST 34233.7-2017, the floating head may include elliptic head and spherical unbeaded head.

Possible variants of floating heads are shown on the Fig. 3.160

Fig. 3.160 Types of floating heads Version of head corresponds to section "<u>Bolted heads</u>".

3.15.42. Air cooled exchanger

Fig. 3.161. Distribution chamber

Air-cooled heat exchanger is created as a model component. This component cannot be joined to anything. No other components can be joined to it as well in the current program version. Air cooled exchanger consists of two identical distribution chambers (Fig. 3.162) and tube bundle (Fig. 3.164). Two heat exchanger chambers can be set independently and have a different type. Special nozzle type can be attached to the chamber.

User's Manual

Bolted with welded head

Bolted with cast head

Bolted with cast or stamped head

Bolted with semicylindrical welded head

Non-detachable semicylindrical head

with welded

Welded without separating walls

Stamped and welded Welded with separating Stamped and welded with without separating walls separating walls

Fig. 3.162. Types of distribution chambers

For welded components of heat exchanger, you can assign a negative tolerance, cladding.

Fig. 3.163. Types of tube bundles

Upon pressing Next >> button, tube bundle parameters can be defined, similar to i. 3.15.35.

Fig. 3.164. Tube bundle

If there are screw plugs in the chambers (Fig. 3.165) they can be calculated according to [34].

Fig. 3.165. Screw plugs in the chamber

The outer frame can be set according to Fig. 3.166 (it is taken into account only in the visualization of the model and in the calculation of the metal consumption table).

	🗹 Outer frame	Number of belts: 3	
	Bottom beam (1):] 10У	>>
3-	Side beam (2):	∟ 50x50x6	>>
	Top beam (3):	∟ 50x50x6	>>
1	Frame material:	CT3 Sheet	>>
	Side si	neet thickness, sл: 10	mm
2'			

Fig. 3.166. External air cooler frame

3.15.43. Nozzle of the air cooler chamber

This component can be attached to the back wall of the cast/forged air cooler chamber, to the rear surface of the cylindrical chamber, to the back or side surface of the box chamber. Input data of tie-in into the cylindrical chamber are set similarly to the component <u>"Nozzle"</u>. For tie-in into the flat wall, the dialogue looks like Fig. 3.167

Fig. 3.167 Nozzle of the air cooler chamber

3.15.44. Cylindrical jacket

A cylindrical jacket can be joined to any cylindrical shell of the existing model (Fig. 3.168). Component name, code of standards, material, dimensions, weld strength factors and load properties for jackets are set in the same way as those for cylindrical shells. Jacket placement within the model is determined by the jacket's adjoining component and the distance from left (bottom) edge (toward Z-axis). Supports, nozzles, stiffening rings and other components can be adjoined to the jacket. Jacket pressure, p_2 , is transferred to adjoining components, and vice versa. The jacket cannot be placed outside the parameters of the shell on which it is placed.

Cylindrical jacket	
Element name: Cylindrical jacket No.1	Jacket design ③ a - cone junction Expansion bellows Parameters >>>
Carrying element: Cylindrical shell No.1	O b - ring junction Junction design
Code: GOST R 52857.8-2007 💌	S D OTypea OTypec
Jacket material:	Typeb O Typed
Cr3 Properties Add	
Distance from element edge, lo: 100 mm	$\alpha = 45^{\circ}$
Jacket internal diameter, D2: 1200 mm	
Wall thickness, s2: 10 mm	$\sim \frac{a_2}{2}$
Corrosion allowance, c1: 2 mm	
Negative allowance, c2: 0.8 mm	
Technological allowance, c3: 0 mm	
Jacket length, I: 1000 mm	$\sim S^{1}$ D_{2} S_{2}
Longitudinal weld strength ratio, Fip: 1	
Circular weld strength ratio, Fit: 1 >>	Insulation and lining >>
Calculation temperature, T: 20 C	Space in jacket
Mean vessel wall temperature, Tcp: 20 C	Space with fluid
Mean jacket wall temperature, Tcp2: 20 C	Space filling ratio (under operating 100 %
Calculation pressure in jacket (without hydrostatics), p2:	Name of operating fluid: <enter value=""></enter>
⊙ Internal ◯ External 0.1 ^{MPa}	Density of operating fluid: 1000 kg/m3
	Kind of test: Hydrotesting
	Test pressure: 0.5 MPa
	OK Cancel Estimation of calculation values
Distance from the jacket's mid-wall to the vessel's external side:	e0 = 95 mm

Fig. 3.168 Cylindrical jacket

Properties of inner jacket environment test properties without supporting shell can be input.

Structure of jacket and shell joint is determined according to GOST 34233.8-2017 (GOST 25867-83) (see Fig. 3.169).

Volume and weight calculation of the jackets content is possible only using the fill factor.

Fig. 3.169 Jacket types as per GOST

Cylinder jackets can have bellows (Expansion bellows) to reduce loads from temperature deformations.

It is possible to calculate jacket as per ASME VIII-1. In this case, variants of connection with casing specified in Fig. 3.170 are taken.

Fig. 3.170 Jacket types as per ASME VIII-1

3.15.45. U-shaped jacket

U-shaped jackets are created using a multi-page dialog and include the following components:

• Vessel shell;

- Jacket shell;
- Vessel head;
- Jacket head.

Jacket and vessel joint data are input similarly to those for cylinder jackets. Jacket and vessel head properties are input in the same way as those for dished heads.

U-jacket	X
Vessel shell Jacket shell Vessel head Head of jacket	
Element name: U-jacket No.1	- Jacket design
Code: GOST R 52857.8-2007 🗸	
Vessel's shell properties	
Cr3 Properties Add	A A A A
Shell internal diameter, D: 1000 mm	-9 4
Shell wall thickness, s: 10 mm	
Corrosion allowance, c1: 2 mm	ಷ 52 a D,
Negative allowance, c2: 0.8 mm	
Technological allowance, c3: 0 mm	
Shell length, L: 2000 mm	
Longitudinal weld strength ratio, Fip: 1 >>	
Circular weld strength ratio, Fit: 1	
Calculation temperature, T: 20 C	d.
Calculation pressure (without hydrostatics), p	+= ²
Internal Lxternal	
Guide spiral	Fining >>
Spiral parameters	
Spiral material:	a K
16FC V Properties Add	
Spiral shift, lo: 100 mm	
Liross section height, h: 60 mm	
Uross section width, t 60 mm	
Weld cathetus, at 10 mm	
Spiral pitch to: 000	
Caladation und alconation 520 mm	
Calculation were strength ratio, Flot 1	
	ОК Отмена Применить Справка

Fig. 3.171 U-shaped jacket: vessel shell

Vessel shell Jacket shell Vessel head Head of jacket		
Jacket parameters	Jacket design	Junction design
Shei matenat	 a - cone junction 	Type a OType c
Challinternal formation D2 and and	O b - ring junction	OTypeb
Chall wall this harmonic 22 1200	<i>S</i> D	$\alpha = 45^{\circ}$
Consistent allowanders and a second		
Negative allowance, c1. 2		
Technological allowance, c2: 0,8	~ 4	α
Shell length 1.2: 2100 mm		
Central zone diameter d1: pop	<u> Ч ч 5 е D2</u>	D s
Longitudinal weld strength ratio, Fip: 1		
Circular weld strength ratio, Fit: 1		Insulation and lining >>
Calculation temperature, T: 20 C		
Mean vessel wall temperature, Top: 20 C		
Mean jacket wall temperature, Tcp2: 20 C	1	
Calculation pressure in jacket (without hydrostatics), p2:	Space in jacket	
Internal OExternal 0.1 MPa	Jacket with fluid	
	Jacket hling ratio (under operating conditions): 100	1 2
Distance from the jacket's mid-wall to the vessel's external side, e0: 95 mm	Name of operating fluid: <be< td=""><td>зедите значение></td></be<>	зедите значение>
	Density of operating fluid: 100	10 kg/m3
	Kind of test: Hyd	drotesting 🖌
	Test pressure: 0.5	MPa
	Sulfurated hydrogen environment	iparatus group: 🗸 🗸
		Estimation of calculation values

Fig. 3.172 U-shaped jacket: jacket shell

U-jacket	
Vessel shell Jacket shell Vessel head Head of jacket	
Head type Elliptic Hemispherical Torispherical	SI III
Head material:	
CT3 Properties Add	
Head wall thickness s1: 10 mm	
Corrosion allowance, c1: 2 mm	
Negative allowance, c2: 0.8 mm	
Technological allowance, c3: 0 mm	
Head height, H: 250 mm	
Bead length, h1: 20 mm	
Ring weld strength ratio, Fi: 1 >>	
Calculation temperature, T: 20 C	
Insulation and lining >>	
	ОК Отмена Применить Справка

Fig. 3.173 U-shaped jacket: vessel head

Fig. 3.174 U-shaped jacket: jacket head

3.15.46. Partial jacketing

Partial jacketing data are input similarly to those for cylindrical jackets.

Jacket partly covering a vessel 🛛 🔀					
Element name: ично охватые	зающая сосуд №1	Supporting element: Обечайка цилиндрическая №1			
Code: GOST R	52857.8-2007 -	Jacket construction as per GOST 25867-83			
Jacket material:					
CT3 • Properti	ies Add				
Anchot tubes material:					
Distance from the element edge lo:	Add				
Lacket internal diameter, D2:	1820 mm	$ \textcircled{\ } \end{array}{\ } \textcircled{\ } \textcircled{\ } \textcircled{\ } \r{\ } \ } \r{\ } \r{\ } \r{\ } \r{\ } \r{\ } \r{\ } \ } \r{\ } \r{\ } \r{\ } \r{\ } \ \r{\ } \ $ } \ \r{\ } \ } \ \r{\ } \r{\ } \r{\ } \ \ } \ \r{\ } \ } \ \r{\ } \ \r{\ } \ \ } \ \r{\ } \ \ \ } \ } \ \r{\ } \ } \ \r{\ } \ \ \ } \ } \ \r{\ } \ \ \ } \ \ } \ } \ } \ } \ } \ } \ } \			
Wall thickness s?	1200 mm				
wait mickness, sz.	10 mm				
Lorrosion allowance, cl:	2 mm				
Negative tolerance, c2:	0.8 mm				
Lechnological allowance, c3: Distance along the axis to the controld	0 mm	$t_I t_p \sim A$			
to the first row of junctions, tL:	120 mm				
Longitudinal pitch of junctions, tP:	191.012 mm				
Number of junctions along the axis, nL:	5				
Number of junctions along the circle, nC:	5	t_p			
Angular pitch of junctions, deltaT:	20 *				
Distance from the edge to the first	10 *				
Junction external diameter, d0:	100 mm				
Weld cathetus, a:	10 mm				
Pipe wall thickness, s0:	10 mm				
Longitudinal weld strength ratio	o, Fip: 1 >>				
Circular weld strength ration	io, Fit: 1 >>				
Junction weld strength rat	tio, Fi: 1 >>	- Space within the jacket			
Calculation temperature, T:	20 °C	Operating fluid in the jacket			
Mean vessel wall temperature, Tcp:	20 °C	Component fill factor (in operating 100 %			
Mean jacket wall temperature, Tcp2;	20 °C	Name of operating fluid: <begure значение=""></begure>			
- Calculated execute in indust (without	hudrostatics) =2	Density of operating fluid: 1000 kg/m3			
	nyurostatics), pz.	Test type: Hudrotesting			
	мга	Test pressure: 0.5 MPa			
Insulation and lining >>		Sulfurated hydrogen environment Apparatus group:			
OK		Cancel Estimation of design values			
Lasket length: L = 1000 ere					
Jacket tengmi. L = 1 uuu mm The circular distance to the first series of connections: tK = 95,9 mm The circular connections step: tT = 191 mm Half-angle coverage of jacket: psi = 50 *					

Fig. 3.175 Partial jacketing

Jacket and shell joint type is determined according to GOST 34233.8-2017 (GOST 25867-83) (see Fig. 3.176).

Fig. 3.176 Jacket and vessel body joint types

3.15.47. Half-pipe coil jacket

alf-pipe coil jacket	
Coil channel First nozzle of coil channel Second nozzle of coil	channel
Channel parameters	Carming element: Cullodrical shell No 1
Element name: Jacket with coiled channels No.1	Channel design
Code: GOST R 52857.8-2007 🗸	 a - semicircular cross-section with V-weld
C-2 Add	D - semicircular cross-section with corner weld
Shell internal diameter D: 1000 mm	C - segmental cross section
Spiral shift lo: 500	
Spiral pitch 1s: 200 mm	19 ¹⁰
Channel external radius, r2: 60 mm	
Channel wall thickness, s2: 10 mm	S 12
Corrosion allowance, c1: 2 mm	
Negative allowance, c2: 0.8 mm	b
Technological allowance, c3: 0 mm	- <u>-</u> ∠ →
Number of channel cols, n2 3 Channel closing number, n3 1 Calculation weld strength ratio, Fi2 1 Calculation temperature, Tc 20 C Mean vessel wall temperature, Tc p2 20 C Mean jacket wall temperature, Tc p2 20 C Calculation pressure in the channel (without hydrostatics) p2 Internal External 0.1 MPs Space in channel Channel with fluid Channel filling ratio: (under operating fluid Channel	
environment ripparate group.	
	ОК Отмена Применить Справка

Fig. 3.177 Half-pipe coil jacket

Spiral jacket data are input similarly to those for cylindrical jackets. During analysis, the coils can be treated as reinforcement of supporting shell by a system

of <u>stiffening rings</u>. Coil types are determined by GOST 34233.8-2017 (GOST 25867-83) (see Fig. 3.178). Nozzles are automatically placed at coil ends.

Fig. 3.179 Coil nozzle

3.15.48. Half-pipe battery jacket

Half-pipe coil jacket data are input similarly to those for spiral jacket. In accordance with GOST 34233.8-2017 (GOST 25867-83), this jacket is not considered as a system of <u>stiffening rings</u>.

Half-pipe battery jacket	
Battery channel First nozzle of battery jacket Second nozzle of	batterv jacket
Channel parameters Element name: Half-pipe battery jacket No.1	Carrying element: Обечайка цилиндрическая №1
Code: GOST R 52857.8-2007 V Channel material: V Properties Add	a - semicircular cross-section with V-weld b - semicircular cross-section with corner weld c - segmental cross section
Shell internal diameter, D: 1000 mm Channel shift, lo: 0.2 m Channel pitch, ts: 300 mm Channel external radius, r2: 60 mm Channel wall thickness, s2: 10 mm Corrosion allowance, c1: 2 mm Negative allowance, c2: 0.8 mm	52 b2
Technological allowance, c3: 0 mm Number of channel coils, n2: 5 Calculation weld strength ratio, Fi2: 1 Calculation temperature, Tcp: 20 C Mean vessel wall temperature, Tcp2: 20 C Mean jacket wall temperature, Tcp2: 20 C Calculation pressure in the channel (without hydrostatics), p2: O Internal O External 0.3 MPa	Channel positioning
Space in channel Space with fluid Space filling ratio (under operating 100 % conditions!): 100 % Name of operating fluid: <enter value=""> Density of operating fluid: 1000 kg/m3 Kind of test: No testing Sulfurated budrogen</enter>	
environment Apparatus group	ОК Отмена Применить Справка

Fig. 3.180 Half-pipe battery jacket

3.15.49. Jacket with longitudinal channels

Jacket with longitudinal channels can be connected to cylindrical shell or conical transition.

Рубашка с продольными каналам	и		X
Название элемента: с продольны	ми канал	ами №1	Конструкция рубашки
Несущий элемент: Обечайка ци	линдрич	еская №	
Нормативный документ: РД 26-01	-149-84	•	
Материал продольных труб:			
Ст3 >>			
Материал кольцевого коллектора:			
Ст3 >>			2-2 ax
Расстояние от края элемента, ю:	0.1	м	
Длина рубашки, L:	1.8	м	
Наружный радиус трубы, Rn:	50	MM	
Толщина стенки трубы, sn:	5	>> MM	
Прибавка на коррозию, с1п:	2	MM	
Минусовой допуск, с2п:	0,8	MM	Толщина сварного шва коллектора, ак: 10 мм
Прибавка технологическая, с3п:	0	MM	Толщина сварного шва трубы, ап: 10 мм
Число труб, n:	8		Расчётная температура стенки рубашки, tp*: 20 °C
Наружный радиус коллектора, Rк:	60	MM	Температура аппарата в начале разогрева, t1: 20 °C
Толщина стенки коллектора, sk:	5	>> MM	Температура теплоносителя в рубашке, t2: 20 °C
Прибавка на коррозию, с1к:	2	MM	Расчётное давление в рубашке (без гидростатики), p2:
Минусовой допуск, с2к:	0,8	MM	Внутреннее О Наружное 0 кГс/кв.см
Прибавка технологическая, с3к:	0	MM	* Ecold Heidzeectho, 3303th 0, 14 VK333th 11 12
К-т прочности сварных швов	, Fi: 1	>>	Индопустимы пластические деформации
Пространство в канале >>		ОК	Отмена Определение расчётных величин

Fig. 3.181 Jacket with longitudinal channels

Parameters of channel cavity are specified by pressing "Space in channel" button, similar to 3.15.1.13.

Types of conjunction are set as per [51] and indicated in Fig. 3.182.

Fig. 3.182 Types of conjunctions

Parameters of pipes and collector (radius, thickness, negative allowance) can be selected from the grade using button >> .

If the wall calculation temperature tp, is unknown, it is necessary to specify "0" instead of it and set temperatures t_1, t_2 .

Option **"Inadmissible plastic deformations"** is used in the presence of brittle coatings, possibility of corrosion cracking, etc.

3.15.50. Convex bulk

This component can be used in horizontal, vertical and column vessels for separation of volumes with different pressures and fillings. In the course of model building, it can be joined to the other components and inserted between them like a cylindrical shell, but during calculation it should be always placed between the other components. A separating wall creates a new volume, calculation of filling for which is performed separately. Filling parameters and propertied of the fluid inside this volume are also set in the dialog of separating wall. Daughter components, pressure in which is transferred depending on the separating wall orientation, can be joined to the separating wall.

Component name:	Ellipsoida	l bulk No.	1			
C	ode: FOC	F P 52857	2-2007 -			+
Bulk material:	Dim	ensions a:	s per ND >>		-@-	<u> </u>
CT3	»>			H		Y
Head inside	diameter, I	D: 1000	mm		Ð	
Head wall th	ickness, s1	10	mm	2	~~	
Corrosion alk	owance, c1	2	mm	× *		
Negative to	lerance, c2	0,8	mm			
Technological allo	owance, c3	0	mm	×		
Hea	ad height, H	250	mm	Location relative to the shells	Invest the	aida
Straight flange	e length, h1	: 0	mm	Between T Inside		900
Welded	joint efficie	ncy, Fi: 1	>>	The space behind the wall Design pressure (without hydrostatics),	p2:	
Calculation terr	nperature, T	: 20	°C	Internal C External 0	MPa	
Design pressure (witho	ut hydrosta	tics), p:				
Internal O	External	0	MPa	Vessel with fluid		
Insulation and lining >>	Hear	l low-cycle	e fatigue >>	by vessel filing ratio	100	•
Defects as per GOST R 52857.11-2007		1	Name of operating fluid:	0	10	
		Density of operating fluid:	900	ka/m3		
				Kind of text-		Ng/110
				Terro or tost.	No testing	
				Sulfurated hydrogen environment		
01/				1		

Fig. 3.183 Ellipsoidal bulk

The head of the bulk can be elliptical, spherical or torispherical.

3.15.51. Virtual bulk

This component can be used in the same manner as <u>convex bulk</u>, but without strength and stability calculation of the separating wall itself (for instance, for modeling vessels with layer by layer filling with a heterogeneous medium, coke collectors, etc.).

Virtual bulk	×
Component name: Virtual bulk No. 1 Design pressure (without hydrostatics), p: Internal External MPa Calculated pressure behind the wall (without hydrostatics), p2: Internal External MPa Internal External MPa Environment behind the wall (p2)>>	
OK	Cancel

Fig. 3.184 Virtual bulk

3.15.52. Ellipsoidal transition

This component can be used in places of different diameters.

Ellipsoidal transition	×
Component name: Ellipsoidal transition No.1	
Code: RD 24.200.08-90 Transition material: Cr3 >>	
Inside diameter in the beginning, Dn: 1000 Inside diameter in the end, Dk: 500	
Nominal thickness, se: 10	mm $1 D_{\pi} \rightarrow 1 e^{S_3}$
Corrosion allowance, c1: 2	mm
Technological allowance, c3: 0	_ mm _ X
Straight flange length, h1:	mm Insulation and lining >>
The length of the thickened shell part, 10: 100	mm Defects as per GOST R 52857.11-2007 >>
The length of the thickened transition part, L0: 100	_ mm
The thickness of the thickened transition part, s10: 20	mm
Welded joint efficiency, Fi: 1	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Calculation temperature, T: 20	°C
Design pressure (without hydrostatics), p:	MPa
ОК	Cancel

Fig. 3.185 Ellipsoidal transition

3.15.53. Expansion bellows

This component behaves in the model similarly to <u>elbow</u>. Its calculation includes an assessment of strength and stability against pressure and displacements, including the calculation of low-cycle fatigue.

Fig. 3.186 Expansion bellows

Expansion bellows deformations can be calculated automatically, based on the fixing and loading conditions of the model. To do this, use the option "Displacements" – "Calculated".

The "Cold spring" option allows to specify a prestressed bellows.

For bellows operating as part of a shell (<u>shell-and-tube heat exchanger</u>), the "No calculation" option is available - it allows to specify a non-standard bellows with a known stiffness and take it into account in the calculation of the shell.

3.15.54. Structure

This component can be attached as a child component to the casing shell; its input data are set similarly to <u>column support structure</u>. Its calculation includes stiffness assessment and implementation of steel structure in the beam model as a super-element. The strength of the structure parts (beams) is not currently estimated.

Component name:	Structure No. 1					Attached to: of university of the second	N01
Structure material:				Tilling with bands		Обечайка цилиндрическая	INST.
C235 Distance from com Nu Start circumscribed cir End circumscribed cir End circumscribed cir I Couplings on each Height borde L Crientation of element Legs ◎ Normal ○ Trangental ○ Along Y axis Braces @ Outcom the row	Properts Properts Sonent edge, lo: where of rods, N: ture height, H: de dameter, D: le dameter, D: umber of belts: facet rs of bonds plac ower level, h1: joper level, h2:	es 100 6 1800 1200 3 ement 100 900	Add mm mm mm mm mm x	Filling with bonds Absent Beam Filling with bonds Brace type 1 Finace type 2 Finace type 2 Finace type 3 Finace type 4 Cross Cross with upper beam Cross with how beams Lower knee-brace Upper knee-brace Cross sections Legs: OD 102 5 Ben	Brace with lower be Brace with lower be Brace with lower be Brace with upper bi Brace with upper bi Brace with upper bi Brace with upper bi Brace with two bea Brace with two bea Brace with two bea Brace with two bea	am type 1 am type 2 am type 2 am type 4 am type 4 am type 4 am type 2 am type 4 Range >>	
 Along the row Across the row 		1		Braces:][10		Range >>	

Fig. 3.187 Structure

The steel structure shall be placed entirely within the boundaries of the parent shell. It can also be placed as part of an assembly. An assembly can contain a sequence of structures, in which case their beam models are linked automatically. End points of structures can have <u>links</u> and <u>fastenings</u>.

Fig. 3.188. Modeling a stand by structure

3.15.55. Vertical tank for oil and oil products

When selecting "Vertical tanks" (Fig. 3.6), an component "Tank" is created automatically in the model, and the dialog with its data opens.

Fig. 3.189 Tank general data

Currently a calculation of the tanks with stationary and floating roof is implemented. Calculation of tanks is available according to the following codes:

- STO-SA-03-002-2009 [54]
- GOST 31385-2016 [31]
- API 650-2020 [76]

Normative internal pressure and internal vacuum are set above the surface of the product (without without regard to hydrostatic pressure). When a checkbox "Pontoon presence" is selected, a weight of the pontoon being at the filling height, is considered (calculation of the pontoon itself is not provided yet).

Component "Tank" cannot be deleted from the model, but can be edited; besides, some daughter components can be connected to it. As the daughter components, the following can be taken:

- <u>Stiffening rings</u> (are connected to the wall);
- <u>Nozzles</u>;

• <u>Service platforms</u> (are connected to the wall);

<u>Lumped masses</u> (are connected to the wall and stationary roof, are divided into metal structures and equipment, are considered in different ways at calculation.

Tank <u>wall parameters</u> can be set by selecting <u>Next ></u> button.

3.15.55.1 Tank wall

Tank							X
Gene	ral data <mark>Wa</mark>	II Roof Head M	lozzles				
	Belt height, h, mm	Nominal thickness, t, mm	Negative tolerance, Deltatm,	Allowance for corrosion, Deltatc, mm	Material	Color	
1	2250	27	0,9 ⊡	1	С235 (Ст3кп)	··· 🗖 🗸	
_2 ▶	2250	19	0,8 ⊡	1	С235 (Ст3кп)	··· 🗖 🗸	• • • • • • • • • • • • • • • • • • •
3	2250	16	0,8 ⊡	1	С235 (Ст3кп)	··· 🗖 💌	
4	2250	16	0,8 😶	1	С235 (Ст3кп)	··· 🗖 🗸	
5	2250	14	0,8 ⊡	1	С235 (Ст3кп)	··· 🗖 💌	
6	2250	14	0,8 ⊡	1	С235 (Ст3кп)	··· 🗖 🗸	
7	2250	12	0,8 ⊡	1	С235 (Ст3кп)	··· 🗖 🗸	
8	2250	12	0,8 ⊡	1	С235 (Ст3кп)	··· 🗖 💌	
	Add belt Vall anchorag chor bolts Material: Dr3 Diame Heat insula	Delete ge Nominal diame Quant ter of bolted circ	v Propert eter, d: 42 ty, na: 24 le, Db: 61000	ies Add ▼ mm I mm		t d y	⁴ ⁴ L _b D ₆
					OK	С	ancel Apply

Fig. 3.190 Tank wall

Height, thickness, negative allowance, corrosion allowance and material are set for each belt. Negative allowance and material can be selected by $\boxed{\hdotset{ }}$ buttons, in accordance with [53].

If additional anchoring of the wall to the foundation is required, anchor bolts can be specified.

Thermal insulation parameters are set in accordance with clause 3.15.1.10.

When modeling a tank with a floating roof, it is necessary to specify the data of the upper wind ring (in addition to it, you can specify an arbitrary number of intermediate rings according to clause 3.15.18).

When calculating API-650, you can select the calculation method according to the code ("1 Foot Calculation Method" is simplified, "Variable Design Point" is more accurate).

Tank <u>roof parameters</u> can be set by selecting <u>Next ></u> button.

3.15.55.2 Tank roof

Fig. 3.191 Tank roof

Style, material and type of connection with wall are set.

When calculating according to API 650, the following options are available for joining the roof to the wall (Fig. 3.192):

The calculation of the supported roof strength and buckling is **not performed** in the current version of the program; only weight loads due to metal structures are taken into account. The weight of the frame roof can be specified in various ways:

• manually (weight value is specified);

R,

• by the attached frame (it is necessary to prepare the frame model in a third-party CAD system similarly to the "Custom equipment" component, Fig. 3.193).

• by supported <u>roof designer tool</u>.

Fig. 3.193 Imported roof frame model

Tank <u>bottom parameters</u> can be set by selecting <u>Next ></u> button.

3.15.55.3 Supported roof designer

This tool allows to create a mesh of beam profiles. The created mesh is "stretched" onto the generatrix of the roof, the weight loads due to all beam elements of the frame are summed up. In addition, the tool allows to create a complex beam-shell finite element model of the tank and export it to an APDL file for strength and stability studies in the Ansys program.

Objects that the designer operates on:

- Nodes (nodal points) indicate the places where the frame elements are joined together and with the roof shell. The nodal points split the roof shell into 4- nodal finite elements;
- Connecting nodes (nodes with the attribute "Roof-wall connection"). This nodal point is involved in the modeling of the wall (from the circular sequence of such nodes, shell 4-nodal elements of the wall are "grown" down to the foundation). It is desirable to arrange the connecting nodes evenly and assign their coordinates as accurately as possible along the circumference of

the wall. An error in the value of the connecting nodes can lead to a significant distortion of the solution;

- Support nodes (nodes with the "Roof-column connection" attribute). In this case, a beam element is "grown" from the nodal point to the foundation, modeling a column of a given section;
- Free nodes nodes where beam elements do not join. Such nodes are used to control the mesh (the roof shell is divided into shell elements using all specified nodes);
- Element section of a beam, connecting two arbitrary nodes with given cross-section;
- Section profile of the element, which can be selected from the database. The sections are named ("Rafters", "Beams", etc.), but this naming is conditional and does not necessarily reflect the functionality of the element. The exception is the "Column" section support nodes always generate a vertical element of just such a section.

When opening the designer, a circular selection is displayed in the Cartesian axes, corresponding to the diameter of the roof in the plan, as well as the area of the central hole (if the "Skylight" option was activated).

The sequence of creating a frame plan:

- 1) Create nodal points ("Nodal points creating" mode) for example, by Cartesian coordinates (X, Y), in the form of a circular array (R, N, ϕ) or by clicking the left mouse button (not recommended, but acceptable, in this case, the coordinates of the node will be taken approximately);
- Connect nodal points with beam elements ("Elements creating" mode) – when two nodes are sequentially selected, they are connected by an element of the selected section;
- 3) Assign attributes to the nodes of support and connecting;
- 4) Assign profile sections.

Nodes can be edited at any time (including after the creation of elements) in this case, the element grid is not destroyed. For this, the "Nodal points editing" mode is provided.

Node attributes can also be changed at any time (group editing is available by selecting with the Ctrl key).

The section of an element can be changed using the "Elements editing" mode (group editing is available).

Element attributes are used to fine-tune the parameters of a beam element (dx, dy - displacement of the cross section at the end point,*rot*- rotation of the section by a given angle).

Fig. 3.195. Roof frame model

Based on this information, the program automatically generates a finite element model. The roof shell and wall belts are divided into 4-nodal shell elements, the frame and stiffening elements (rings, columns) are represented by beam elements. Shell elements in the center hole (Dl) area are not created. The model can be loaded and exported to an APDL file (see section 3.17.1 for details).

3.15.55.4 Tank bottom

Tank			×
General data Wall Roof <mark>Head</mark> Nozzles			
Head Material of edges: [=235 (Cr3kn) Thickness of ring edges, the Allowance for corrosion of edges, Deltatche Negative allowance for edges, Deltatche Width of edge inner part, Lhe Plastic deformations in the edge sheet Material of center: C235 (Cr3kn) Thickness of center, the:	20 mm 1 mm 0.9 mm 900 mm are allowed	t d d d d d d d d d d	
		OK Cancel Apply	

Fig. 3.196 Tank bottom

Information on the nozzles in the wall and stationary roof is entered by selecting \bigvee button.

Wall nozzles				
	1	2	3	
Name	Люк-лаз	Патрубок для зачистки	Патрубок приемо-раз;	Патрубс
Drawing mark	Π4	□3	□2	
Inside diameter, mm	606	147	257	
Wall thickness, mm	12	6	8	
Туре	Set-in with reinforcir 🗸	Set-in with reinforcir 🗸	Set-in with reinforcir 🗸	Set-in w
Positioning angle, *	90	30) 180	
Displacement from edge, mm	750	300	390	
Outside part length, mm	350	200	250	
Inside part length, mm	200	125	150	
Reinforcement thickness, mm	6	б	6	
Reinforcement width, mm	315	79,5	136,5	
Add Edit			Delete sele	ected
Roof nozzles				
	1			
• •	л X			
Name	Люк световой			
Name Drawing mark	П6			
Name Drawing mark Inside diameter, mm	П6			-
Name Drawing mark Inside diameter, mm Wall thickness, mm	Люк световой Пб 506 12			-
Name Drawing mark Inside diameter, mm Wall thickness, mm Type	люк световой Пб 506 12 Set-in with reinforcir V			-
Name Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, "	люк световой Пб 506 12 Set-in with reinforcir ✓ 0			-
Name Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, * Displacement from edge, mm	Slok Ceerosou □6 506 12 Set-in with reinforcir ↓ 0 350			-
Name Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, * Displacement from edge, mm Outside part length, mm	Люк световой Пб 506 12 Set-in with reinforcir ↓ 0 350 350			-
Name Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, " Displacement from edge, mm Outside part length, mm Inside part length, mm	JHok CBETOBON □16 506 12 Set-in with reinforcir 0 350 350 200			-
Name Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, * Displacement from edge, mm Outside part length, mm Inside part length, mm Reinforcement thickness, mm	JHok CBETOB 04 □6 506 12 Set-in with reinforcir 0 350 350 200 10			-
Name Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, * Displacement from edge, mm Outside part length, mm Reinforcement thickness, mm Reinforcement width, mm	JHok CBETOB 04 □6 506 12 Set-in with reinforcir 0 350 350 200 10 265			-

3.15.55.5 Tank nozzles

Fig. 3.197 Tank nozzles

For each list of nozzles the following operations are available:

- Adding of nozzle to the wall/roof ("Add"). If some of already created nozzles is highlighted in the list, then data of a newly created nozzle is copied from the selected one; Nozzle data editing window is opened automatically; some data can be corrected right in the list;
- Nozzle editing (command "Edit");
- Deleting nozzles one by one or group; all selected nozzles are deleted.

Then all added nozzles can be edited and deleted as ordinary components of the model.

3.15.56. High pressure cylinder

Component name, code, material, geometry and weld strength ratios are assigned equally to cylindrical shell (i. 3.15.2). Both a single-layer and a multilayer shell can be assigned. At that, for multilayer shell you should select a type of layers positioning (concentric or scroll).

Ellipsoidal high pressure head Component name: Эллиптичес	жое днищ	е высокої	
Code: FOCT F	54522-20	11 👻	
Head material:	34322-20		
Ст3 >>>			
Head inside diameter, D:	1000	mm	
Head wall thickness, s1:	40	mm	
Corrosion allowance, c1:	2	mm	
Negative tolerance, c2:	0.8	mm	
Technological allowance, c3:	0	mm	
Head height, H:	250	mm)
Straight flange length, h1:	300	mm	Insulation and lining >>
Weld strength fact	or, Fi: 1	>>	
Calculation temperature, T: Design pressure (without hydrostati	200 cs), p:	°C	
Internal External	5	MPa	
ОК		Ca	ncel Design values calculation

3.15.57. Ellipsoidal high pressure head

3.15.58. High pressure flat head

It is possible to assign three types of high-pressure flat heads construction: with conical and radial transition, as well as with groove.

Spherical unbeaded high pressure head			×
Component name: Сферическое дни	ще выс	окого	
Code: FOCT P 5452	2-2011	-	
Head material:			
Ст3 >>			
Inside diameter of adjacent component, D:	1000	mm	R θ
Wall thickness of adjacent component, s:	40	mm	
Head height, H:	500	mm	51
Head wall thickness, s1:	40	mm	· · ·
Corrosion allowance, c1:	2	mm	
Negative tolerance, c2:	0.8	mm	Insulation and lining >>
Technological allowance, c3:	0	mm	
Welded joint efficiency, Fi:	1	>>	
Calculation temperature, T:	20	°C	
Design pressure (without hydrostatics), p:			
Internal O External 5	MPa		
ОК	Canc	el	Design values calculation

3.15.59. Spherical unbeaded high pressure head

Fig. 3.201 Spherical unbeaded high pressure head

3.15.60. Bolted high pressure flat head

3.15.61. Bolted high pressure spherical head

Fig. 3.203 Bolted high pressure spherical head

3.15.62. High pressure nozzle

Component name: Illinuon Nº2		_	Drawing mark: Illmuten No.	Nozzle attached Ukrawanawana ofeur
Component name. Intraceprez			Design models of nozzles	цилиндрическая ореча
Code: OCT 20-1	046-87	•	- Lond in in the ordentical	la su d
Vozzle material:			 body with reinforcing belt 	
20 >>> Nozzle inside diameter, d: Nozzle wall thickness, sw: Total allowance to thickness, cw: Nozzle's exterior pat length, w: Fillet radius, rb: Fillet radius, rb:	100 mm 40 mm 2 mm 100 mm 15 mm 10 mm		Leadin with accurations connection Leadin with continuous connection Leadin without welded nozzle, variant 1 Leadin without welded nozzle, variant 2	
Calculation temperature, T: Design pressure (without hydrostatics), Internal External Reinforcing bandage:	120 °C p: 20 MPa		POSITION: Position:	
Bandage material:			Tited Offect Let:	
20 >>			2000 mm	
Bandage length, lb:	200 mm		Axis offset angle, Teta:	
Bandage thickness, sb: Transition length, lk:	20 mm		0 *	
Insulation and lining >>				

Fig. 3.204 High pressure nozzle

3.15.63. High pressure flange joint

This component can be attached to a high pressure shell or high pressure nozzle.

3.15.64. High pressure bend

This component is used to simulate the piping of the high pressure vessels.

3.15.65. Viewing window in the boss

Fig. 3.207 Viewing window in the boss

This component can be joined to cylindrical shell or elliptic head. Possible variants of structure:

Fig. 3.208 Viewing window types

Gasket properties, temperatures and fasteners parameters setting is performed similarly to the flange connection (only soft gaskets can be used).

Window position on the bearing component is defined similarly to the nozzle.

Button Dimensions as per ND >> ("Sizes as per codes") enables selection of standard variants of component from database.

Additional glass parameters					
Strength calculation of glass required Code: tso 21922-2021					
* Bending tensile strength, dm: 100 MPa * Guide values: Annealed glass: 40-60 MPa Tempered glass: 100-150 MPa					
OK					

Fig. 3.209 Additional glass parameters

Using the button >> it is possible to set additional glass parameters for strength calculation (Fig. 3.209).

3.15.66. Viewing window in the nozzle

This component acts in the structure similar to the head.Defining of properties is performed similar to the window on the weldolet.

3.15.67. Flange boss

Flange boss	0	- 0	- X -
Element name: Фланц	евая бобышка М	₩21	Type
Joined to: Обеча	йка цилиндриче	ская №1	Type A (welded)
Code:	OCT 26-01-748	-73 •	$a D_2$
	Dimensions as	per ND >>	
Boss parameters			
Material: CT3		>>	
Inside diamet	ter, d1: 78	mm	
Outside diame	eter, D: 195	mm	
Thickn	iess, H: 36	mm	
Corrosion allowar	nce, c1: 0	mm	<u> </u>
Negative allowar	nce, c2: 0	mm	Use 1 (male) OUse 3 (groove)
Technological allowar	nce, c3: 0	mm	Use 2 (female) Use 4 (oval)
Male diamet	ter, D2: 138	mm	Desilianian
Male he	eight, f: 3	mm	Displacement, Lu:
Female diamet	ter, D3: 121	mm	1000 mm
Female (groove) dep	pth, f1: 3	mm	Teta:
Groove inside diamet	ter, D4: 105	mm	0 •
Fasteners Outside diameter	d: 16 -		· ⊨────────────────────────────────────
Number of st	tuds n: 4		$+ \cdot - \cdot + \cdot + (\cdot \times X')$
Diameter of bolted circ	de. D1: 160		
Drillina de	epth, L: 28	mm	
Thread d	lepth, l: 20	mm	
Calculation temperate	ure, T: 200	°C	
Calculation pressure (withuot hyd	drostatics), p:		
Inside Outside	1,6	MPa	
ОК]		Cancel

Fig. 3.211 Flange boss

This component can be joined to cylindrical shell or elliptic head. Possible variants of structure:

Fig. 3.212 Flange boss types

3.15.68. Vessel assembly

This component provides creating of a model that has two or more vessels. (Fig. 3.213).

Fig. 3.213 Two-level vessel

This assembly is a coordinate system tied to some component, shifted and rotated relative to the source coordinate system (model CS or parent component CS).

Vessel assembly		×
Component name:	Vessel assembly No.1	
Joined to:	Cylindrical shell No.1	
Assembly origin		
Relatively to model	cs	1 000
O Relatively to CS at t	he parent start	$\phi_{Y} = -90^{\circ}$
 Relatively to CS at t 	the parent end	
X0: 0 Y0: 0	Z0: 0 mm	
Turns aro	und own axes:	
FiX: 0 FiY: 0	FiZ: 0 °	
	ОК	Cancel

Fig. 3.214 Vessel assembly

New coordinate system is shifted relative to the old one at X_0 , Y_0 , Z_0 , and then is rotated around its own axis X, Y, Z consequently to ϕ_X , ϕ_Y and ϕ_Z . Child components of the vessel, rotated in a specified manner, are joined to the assembly. To close the structure of the unit, the assembly shall be used together with the <u>Rigid link</u> component.

3.15.69. Link

The component allows the two endpoints of the device to be rigidly connected at the level of a beam finite element model, by visually forming a rectilinear area of the given section.

Rigid link				×
Component name Attached to Узел сопряжения № © End point Connected component Обечайка цилиндри- © End point Construction material	 Rigid link Nº1 Start point Start point Start point () Start point >> >>> 			
Construction section: • 5	Section rotation angle, ω: 0 Design temperature, Τ: 20	Assortment >> ° °C		
Absolute By cross section Manually Flexible link (rope)	Surriess values Kx: 0 kN/mm Ky: 1000000000 kN/mm Kz: 0 kN/mm	Mx: 0 My: 0 Mz: 0	kN·m/° kN·m/° kN·m/°	OK Cancel

Fig. 3.215 Link

The component is attached to the end of the shell or <u>nozzle</u>, to the joining pad, <u>saddle support</u>, <u>connecting node</u>.

The other end area shall be selected from the list of available related components.

The weight of the material for this component is taken into account for a given section and is applied as a distributed weight load. The link is visually displayed with the specified section (if specified), and its stiffness is set by the "Stiffness calculation" option:

- Absolute an absolutely rigid link is formed;
- By cross section stiffness parameters are calculated for a beam element of a given section and length;
- Manually the stiffness components must be entered;
- Flexible connection (rope) it is necessary to set the rigidity parameters and pre-tension of the rope. This link is excluded when a compressive load is received during the solution process.

3.15.70. Custom equipment

This component allows you to add arbitrary equipment created in a third-party CAD system to the model. These can be internal technological components, metal structures, external units, etc. The equipment will be visualized in the context of the model, as well as taken into account in the formation of the materials table and

Custom equip	ment		×
Model file:	C:\Users\Model_4.igs		Open file
Att. Compone Assembly or Relativel Relativel Relativel X0: 0	ached to: Обечайка цилиндрическая №1 nt name: User equipment №1 igin / to world CS / to CS at the parent start / to CS at the parent end Y0: 0 Z0: 0 mm Turns around own axes		φχ
 	op: 90 op: 0 o Scale factor: 0.001 equipment weight attributes in the model file of bodies and specified density of bodies and specified material d mass of equipment d Equipment mass: 0 kg	Presents under mounting cond Component type: Structure	ition
ОК	Cancel	Design valu	es calculation

in the calculation of loads as a lumped mass rigidly connected to the selected parent component.

Fig. 3.216 Custom equipment

To load the equipment, it is necessary to prepare a file with its model in one of the popular <u>data exchange formats</u> and specify it in the "Model file" line. After loading, the assembly elements are stored in the vessel model (synchronization with the source file is not supported).

The options "Assembly origin", "Turns around own axes" allow placing equipment at an arbitrary point of the model. The Scale factor option allows you to control the scaling of the custom model if the third-party CAD units are different from those used in the program.

The "Equipment weight load" option allows you to set the method by which the weight load will be calculated:

- "By material attributes in the model file" if the assembly parts have a material density attribute set, the volume of each part is multiplied by the density;
- "By volume of bodies and specified density" the value of the material density is set by user, the volume of each part is multiplied by the density;
- "By volume of bodies and specified material" the material of equipment elements and its density is selected by user from the database, the volume of each part is multiplied by the density;
- "By specified mass of equipment" the weight of equipment is set by user manually.

The "Component type" option (Equipment/Structure) is required for compatibility with the "Passat-Tanks" module:

- Loads from the weight of equipment and metal structures are calculated in different ways;
- Structures attached to the carcass roof are identified as carcass element.

3.15.71. Non-circular component

This component is intended for modeling and analysis of rectangular and oval structures.

Fig. 3.217 Non-circular component

Available configurations of the component are determined by the code (Fig. 3.218).

Some configurations of the component can be reinforced with stiffeners (set by the "Section" button similar to the <u>stiffening rings</u> of cylindrical shells).

VESSEL STRENGTH ANALYSIS SOFTWARE

Fig. 3.218 Non-circular component as per ASME VIII-1

The "First head" and "Second head" tabs allow you to create flat heads at the ends of the component (Fig. 3.219). These heads can be parent components for <u>nozzles</u>.

Non-circular component	
Vessel shell First head Second head Perforation	
☑ Flat end	Construction of heads and covers
Material: Cr3 Pipe >> Nominal thickness, t: 22 mm	
Corrosion allowance, c1: 1 mm	0b-2 Oh Op
Technological allowance, c3: 0 mm	○ c(1) ○ i ○ q
Longitudinal joint efficiency, E: 1 >>	$\bigcirc c(2) \bigcirc j \bigcirc r$ $\bigcirc d \bigcirc k \bigcirc s(1)$
Circumferential joint efficiency, E: 1	

Fig. 3.219 End head of a non-circular component

The "Perforation" tab allow you to create an array of holes that weaken one of the walls (for example, to model the tube sheet of an air cooling chamber).

Fig. 3.220 Perforation of the wall of a non-circular component

3.15.72. Connection node

The component, similar to an <u>assembly</u>, allows you to form a point in model space, which other components (<u>link</u>, <u>fixing</u>, <u>load</u>) will use as a parent node.

Connection node	×
Parent component: Обечайка цилиндрическая №1 Component name: Connection node №1	Io X
Relatively to world CS Relatively to CS at the parent start Relatively to CS at the parent and	
X0: 0 mm Y0: -2000 mm Z0: 0 mm	
ОК	Cancel

Fig. 3.221 Connecting node

3.16. Editing and deleting input data

After the model is created, its components can be edited or deleted, their colors can be changed, and existing components can be copied as new ones.

Select the desired component to edit or delete an component. If there are several components in one spot, select the desired component and choose the operation you wish to perform.

Fig. 3.222 Editing and deleting input data

Select whether to edit or delete the component. If component dimensions or load properties are changed, adjoining components of the whole model will also be changed (after a warning message is displayed).

Confirmation will be requested before deleting an component. In addition, if selected component includes daughter components (supports, nozzles, flanges, etc.), a warning message will be displayed before their deletion.

Components can also be edited or deleted by pressing "F4" or "F8", respectively, and choosing the desired component from a table.

Select an component to edit:	
All components	
Cylindrical shell №1 Ellipsoidal head №1 Ellipsoidal head №2	Edit
	Exit

Fig. 3.223 Selection of the component

A component can be selected using the mouse cursor or the "Select" (icon) command of the pop-up menu (selected component will be highlighted). Selected component can be edited by double-clicking it or pressing "F4" and deleted by pressing "Delete" or "F8". It can also be copied and then pasted. When pasting, the copied component will be adjoining to the selected one (if any). If no component is selected when pasting, a dialog with the list of possible adjoining components will appear.

3.16.1. Group data editing

If necessary to change some parameters (design temperatures, corrosion allowances) of several components within the model immediately, it can be conveniently done using icon **1** "Group data editing".

🔳 Group data editing				×
Data type:	Temperature			•
Component	Parameter	Value	Replace	^
ipsoidal head #1				
абочие условия	Design temperature, T, *C	200		
pzzle #1 (Nozzle #1)				
абочие условия	Design temperature, T, *C	200		
pe flange #2				
	Design temperature of flange (ring) 1, Tf1, °C	200		
	Design temperature of flange (ring) 2, Tf2, °C	200		
	Temperature of bolts/studs, Tb, °C	200		
lindrical shell				
абочие условия	Design temperature, T, *C	200		
ddle support #2	Design temperature, T, °C	20		
ddle support #1	Design temperature, T, *C	20		•
pzzle #2 (Nozzle #2)				
абочие условия	Design temperature, T, *C	200		
pe flange #1				~
<				>
Select all Reset selection Los	ding case: Рабочие условия • Select New v	alue: 250	°⊂ Rep	lace
ОК	Cancel			

Fig. 3.224 Group data editing

In this window you can directly edit the available data cells, and also check a group of cells (buttons "Select all" and "Deselect" select/clear all the checks in the list). Then you can input a new value below and press "Replace" button. In the example at Fig. 3.224, all temperatures in the model, except for saddles supports ones, will be replaced to 250°C.

3.16.2. Insulation setting by list

"Insulation list" tool provides setting and changing of thermal insulation parameters of several model components.

	Components insulation									×
	Component	Presence	Name	Th	hickness	Density	Test conditions	Assembly co	Replace	
	Cylindrical shell No.2	\checkmark	Insulation	•••	15	150				
	Flange joint No.1		Insulation	••••	0	0	\checkmark	\checkmark		
	Cylindrical shell No.1	\checkmark	Insulation	••••	10	150	\checkmark	\checkmark		
	Ellipsoidal head No.1	\checkmark	Insulation		10	150	\checkmark	\checkmark		
]	Select all Re	eset selection	Insulation Insulation name: Insulation thickne Insulation densi Presents under test Presents under mou	Rockv ess, s(i) ty, ro(i) condition inting co	wool-1): 12): 154 ions onditions	mm kg/m3			Replace	
		ОК					Cancel			

Fig. 3.225 Insulation setting by list

In the open window, you can directly edit the available cells, as well as check a group of cells (buttons "Select all" and "Deselect" select/clear all the checkmarks in the list). After that, you can enter the insulation sample parameters and click the "Replace" button. In the example shown in Fig. 3.225. after clicking the "Replace" button, thermal insulation on all components will be changed from mineral wool boards to fiberglass mats.

3.16.3. Material setting by list

"Materials list" tool allows you to set and change material parameters for several model components.

VESSEL STRENGTH ANALYSIS SOFTWARE

	Group data editing							×
						Data type	Shell material	~
	Component	Mater	rial	Type/Grade	Workpiece	Replace	Bolting material	
1	Днище эллиптическое №2	Ст3			Sheet		Gasket material	
2	Теплообменник №1						Anchor bolt material	
3	Heat exchanger shell	Ст3	•••		Sheet			
4	Baffle	Ст3			Pipe			
5	First tubesheet							
6	Shell band	Ст3			Sheet			
7	First tubesheet	Ст3			Sheet			
8	Second tubesheet							
9	Shell band	Ст3	•••		Sheet			
10	Second tubesheet	Ст3			Sheet			
11	Tubes	Ст3			Sheet			
12	! Штуцер №3 (Штуцер №3)	Ст3			Sheet			
13	Опора седловая №2	Ст3			Sheet			
14	Опора седловая №1	Ст3	•••		Sheet			
15	ы Штуцер №2 (Штуцер №2)	Ст3			Sheet			
16	Днище эллиптическое №1	Ст3			Sheet			×
	Select all Reset selection		New	value: CT 3 Pip	e		>>	Replace
	ОК					Cancel		

Fig. 3.226 Materials setting by list

In the window that appears, you can edit the available materials, and also check a group of cells at once (the "Select all" and "Reset selection" buttons mark/reset all the checkboxes in the list at once). Then you can specify a material sample and click the "Replace" button. When replacing a material, **collisions are not checked** (applicability of the material at a specified thickness, temperature, design code, etc.).

3.17. Data export and import

There are several import/export options in PASS/EQUIP. This is done by saving files in different formats. The following import/export options are currently available:

Form	nat	Description						
x	Export to XML Import from XML	Import/export to XML format. XML format data contain an object model and are sufficient for setting/retrieving all model properties required for vessel strength analyses. For more details, see Attachment "Passat XML"						
X	Import from MechaniCS XML							
Ê	Export to Nozzle- FEM	When exporting to the "Nozzle FEM" program, the model is saved completely in XML format, while the						

		target element is marked with a special tag, which allows the "Nozzle FEM" program to correctly interpret it. You must specify the folder where the exported files will be placed. The file names are the same as the components names. You must specify which of the components should be exported, or select an individual component using the context menu of the right mouse button (this can be a nozzle, a conical reducer, etc.).
e	Export of other file type to PASS/EQUIP file	When saving, a file type can be changed: i.e. a vertical model or column can be saved as horizontal model for calculations of tests in the horizontal position on the saddle supports.Not all of components can be saved in the new type of model, and appropriate notification will be displayed.
4	Export to IGES Export to STEP Export to ACIS Export to Parasolid Export to JT Export to VRML Export to STL	Creates the selected file format, containing geometric parameters of the vessel solid model and the attributes of object colors. In case simplified redesign mode is of switched on, the model will be additionally redesigned in precise mode, which may take more time. Obtained files can be opened and used for creation drawings of views and sections of the vessel in the popular 3D design and analysis systems (SolidWorks, Kompas-3D, ANSYS, etc.).
٨	Export to Ansys (APDL)	The command is available for a vertical tank model (Passat-Tanks module). A finite element model of the structure is created, to which loads are applied based on the selected code (STO-SA-03-002, GOST 31385, API 650). The model is exported to an APDL batch file, which can be opened in Ansys to estimate the strength and buckling of the structure under a given loading mode. For details, see clause 3.17.1

When running a program with command line parameters **passat.exe** File_Name /savexml, the program saves an opened file in XML format in silent mode and ends.

3.17.1. Export of a tank model to Ansys

After creating a tank model, it can be exported to an Ansys batch file (APDL format) with constraints and applied loads, according to the selected code (Fig. 3.227, Fig. 3.228).

Fig. 3.227 Elements of the exported model

Fig. 3.228 Ansys exported model solution example (hydrostatic pressure loading, deformed view, stress intensity)

3.17.1.1 Model loading as per STO-SA-02-003, GOST 31385-2016

When selecting the option "Tank loading according to STO-SA-02-003, GOST 31385-2016" in the general data, the model is loaded according to the settings Fig. 3.229.

Model loading as per STO-SA-	03-002-2009 ×
Loading condition O Operating Impty tank buckling	
Snow loading O Uniform Non-u	uniform
Wind loading Apply O No	
ОК	Cancel

Fig. 3.229 Model loading as per STO-SA-02-003, GOST 31385-2016

Option	Description	Note
Wind loads	Wind loads, if specified, are applied to the roof (wind uplift as a constant internal pressure $0.9 \cdot p_w \cdot C_{e2}$ as per [35]) and to the wall (variable pressure diagram in height and in plan $0.9 \cdot k \cdot p_w \cdot C_{e1}$ as per [35])	
Snow loads: uniform	The weight load due to snow is applied vertically downwards, taking into account the inclination of the normal to the roof surface: $p_s=0.9 \cdot p_{s0}$	ρs Η α. ρ _s .cosα

Snow loads: non-uniform	The weight load due to snow is applied vertically downwards, taking into account the inclination of the normal to the roof surface, as well as the unevenness factor as per [54]: $p_s=0.9 \cdot \mu \cdot p_{s0}$	p_{s}
Operating	Loading with weight loads, internal vapor pressure and static head of the product: $p=\rho \cdot g \cdot (H-x)+1.2 \cdot p_i$ Wind loads are applied automatically (if any). The weight of the metal is taken in the corroded state. The weight of the attached metal structures and equipment is applied with a coefficient of 0.95. The equipment and metal structures on the wall are applied as a weight load distributed along the circumference.	
Empty buckling	External pressure on the wall: $p=0.95 \cdot 1.2 \cdot p_v$ External pressure on the roof: $p=0.95 \cdot 1.2 \cdot p_v + 0.95 \cdot (1.05 \cdot G_{r0} + 1.3 \cdot G_{rt})/(\pi$	

$\cdot r^2$), where G_{rt} – roof insulation weight, G_{r0} – roof equipment weight.	
Snow and wind loads are applied optionally.	

3.17.1.2 Model loading as per API-650

When selecting the option "Tank loading according to API-650" in the general data, the model is loaded according to the settings Fig. 3.230. The minimum design load on the roof $L_r=1.0$ kPa is considered as a constant vertical load in the plan, it is applied to the roof elements taking into account the direction of the normal to the surface at the considered point ($L_r \cdot \cos \alpha$).

Uniform snow load $S_b=0.84$ ·S, non-uniform snow load depends on roof slope: $S_u=\{S_b \text{ when } \theta \le 10^\circ; 1.5$ ·S_b when $\theta > 10^\circ\}$, is distributed over the roof sector 135° in the plan.

The design wind pressure on the shell $P_{WS}=0.89 \cdot (V/190)^2$, is applied as a horizontal load from the windward side, taking into account the direction of the normal: $F_x=P_{WS} \cdot A_1 \cdot \cos \alpha$, where A_1 is the area of the considered wall element.

The design wind uplift pressure on the roof is $P_{WR}=1.48 \cdot (V/190)^2$ applied as internal pressure to the roof elements (normal to the surface at the considered point).

Model loading as per API-650	×
Loading condition ● Static head and internal pressure (strength): DL + E + Pi) ● Wind and internal pressure (strength): DL + W + 0.4 · Pi ● Wind and exrnal pressure (strength and buckling): DL + W + 0.4 · Pe Gravity load (strength and buckling) ● DL + max{Lr; Sb} + 0.4 · Pe ● DL + Su + 0.4 · Pe ● DL + Pe + 0.4 · max{Lr; Sb} ● DL + Pe + 0.4 · Su	
DL - dead load F - static head Pi - internal pressure Pe - external pressure (vacuum) W - wind load Lr - minimum roof live load 1 kPa Sb - balanced design snow load (0 if absend) Su - unbalanced design snow load (applied over a 135° sector, 0 if absend) Su Cancel	

Fig. 3.230 Model loading as per API-650

3.18. Vessel components analysis and output of results

When model creation and input of load and material properties is complete, press "Vessel analysis F3" (or button) to run the analysis.

If vessel component dimensions and placement meet the analysis requirements, a detailed report containing strength analysis results and operability conclusions for each individual component will be displayed.

3.19. Output in RTF format

Analysis output including intermediate and final results can be saved in RTF format. Output in RTF format is convenient in that its format can be set manually by using a template and that it can be edited in a word processor, such as Microsoft Word.

To export to RTF format, use the the button (Ctrl+W). Output options can be set in the dialog window that will open (Fig. 3.232).

Creation of	eporta]								X
Components	General	Title Block filling								
	Check	components, whi	ch course (of calculatio	on is to b	e incuded i	in the repo	rt:		
🗹 Ellipsoi	dal head Nº	2								
🗹 Cylindi	ical shell NS	1								_
Ellipsoi	dal head NS	1								_
										_
										_
Sele	:t all	Desele	ct							
	Kind of the	report: Full repor	t, based o	n ESKD			~			
	Te	mplate: Z:\Passa	t Многояз	ычный\Rej	ports Ten	nplates\En	g\eskd.r	Selec	t template	
	Save Rep	ort as: Z:\passa	:\Example:	s\Passat - I	norizonta	11.rtf		Se	lect file	
						Open repo	rt in MS Wo	ord		
					Cri	eate Repor	rt		Cancel	

Fig. 3.232 Output in RTF format

Output options:

Output type	<i>Full report, based on ESKD</i> (Russian unified design documentation system) –contains input data and intermediate and final analysis results, including borders and title blocks in accordance with ESKD. <i>Brief report, based on ESKD</i> –contains input data and final analysis results, including bounds and title blocks in accordance with ESKD. It includes only criteria on which it is concluded about the vessel operability, and the values that they contain. <i>Full report in free format</i> –contains input data and intermediate and final analysis results. Output format is similar to the HTML format displayed at the end of analysis. <i>Based on user template</i> – output format is defined by the selected template.				
Template	Allows selection of the template to be used for output.				
Save report as	Allows input of the file name under which output should be saved.				
Open output in MS Word If selected, after output file is created, automatically be opened in MS Word (MS Wo					

	or higher must be installed).				
Create output	Generate output file.				
Cancel	Close window without creating output file				
"Elements" tab (Fig. 3.233)	Allow selection of model components to be included in output.				
"General" tab (Fig. 3.233)	Allows input of vessel and plant names, analysis number and other values that can be included in the output. See 3.19.1.				
"Title Block" tab	Allows input of information to be included in the Title Block of reports based on ESKD (or a custom format using a similar template)				

Creation of report									
Components General Ti	tle Block filling								
Object name	1	reation of report	Dia di filia a						
Unit name	Дефлегматор поз.902/1	components General							
Calculation number	<enter calculation="" number=""></enter>			Signature	Date				
Order number	<enter number="" order=""></enter>	Designer	<enter name=""></enter>				Liter	Sheet	Sheets
Order name	<enter name="" order=""></enter>	Supervisor	<enter name=""></enter>						
		Estimator	<enter name=""></enter>				<enter< td=""><td>rganizatio r organiza</td><td>in ition na</td></enter<>	rganizatio r organiza	in ition na
Organization	<enter name="" organization=""></enter>	Inspector	<enter name=""></enter>			Strength			
City	<enter city=""></enter>	Confirm.	<enter name=""></enter>			calculation			

Fig. 3.233 Title block

3.19.1. Template creation

An output template must be in RTF format and can be created using any word processor supporting this format – for example, Microsoft Word. The template can include any components and formatting, which will be included the output. To insert appropriate data into the output, variables used by PASS/EQUIP must be included in the template. These variables will be substituted with actual values during output generation. A hatch sign (#) must be placed before a variable in the template. Two consecutive variables must be separated by a space. If a hatch sign not intended for variable definition must be placed, two consecutive hatch signs should be used (##).

Output of variables can be modified using parameters. Parameters are written inside the variable string, separated from the variable name by a colon and from each other by a comma. Parameters can have values, indicated by an equal sign.

#VARIABLE_NAME:PARAMETER[=VALUE],PARAMETER[=VALUE]...#

3.19.2. Use of variables

The following	variables are	currently	available f	or use in	templates:
0		2			1

Variable name	Description	Place of value
#OBJECT#	object name	"General" tab
#PLANT#	name of plant	"General" tab
#NCALC#	analysis number	"General" tab
#NORDER#	order number	"General" tab
#ORDER#	order number	"General" tab
#ORGANIZATION#	organization name	"General" tab, "Title Block" tab,
#CITY#	city of organization	"General" tab
#TITLE1# – #TITLE5#	job titles in Title Block text, top to bottom numbering	"Title Block" tab
#NAME1# - #NAME5#	surnames in Title Block text, top to bottom numbering	"Title Block" tab
#APPTITLE#	software name and version	set automatically
#PROGRESS#	vessel component analysis progress	set automatically in the range of the cycle # <element#< th=""></element#<>
#IMG#	figure containing vessel view	set automatically based on input options
#CALCDATE#	Analysis date and time	set automatically, according to current analysis time
#COMPLEX#	Determines whether the current parameter is a complex one (containing other parameters). For example, an component's material is a complex parameter.	set automatically in the range of the cycle effect #<parameters#< b="">. Set as «TRUE» or «FALSE»</parameters#<>
#CALC#	Determines if the parameter is an intermediate analysis value	set automatically in the range of the cycle effect # <parameters#. set<br="">as «TRUE» or «FALSE»</parameters#.>
#NAME#	parameter name	set automatically in the range of the cycle effect #<0PTIONS#
#DIM#	parameter dimensions (if applicable)	set automatically in the range of the cycle effect #<0PTIONS#
#SYMB#	parameter symbol (if applicable)	set automatically in the range of the cycle effect #<options#< b=""></options#<>
#VAL#	parameter value	set automatically in the range of the cycle effect #<0PTIONS#
#RESULT#	Component analysis results (whether or not it meets the	set automatically in the range of the cycle effect

standards)	# <model_compone< th=""></model_compone<>
	NT#. Set as «SUCCESS»
	or «FAIL».

To simplify the creation of a new template, an existing template installed with the software (eskd.rtf, located in the "Reports Templates" folder) can be used. Copy the template file under a new name and edit it.

Any variable can be used at any point in the template any number of times. Output variable text format will match formatting set in the template.

For example, if the template includes the following fragment:

Analysis was carried out by **"#ORGANIZATION#"** #CITY#

where variable values are "NTP Truboprovod" and "Moscow" respectively, the output will look like this:

Analysis was carried out by "NTP Truboprovod" *Moscow*

The only exception is the #REPORT# (#REPORT_BRIEF#) variable, the formatting of which is set automatically because it includes a large number of text fragments, titles, tables and figures describing the course of component analysis (full or brief).

3.19.3. Conditional variables

Conditional variables can also be used, which provide data output depending on fulfilment of various conditions. Conditional variable consists of two parts with a text fragment between them, which will be printed if conditions are met. The first part consists of text in the form of #<VARIABLE_NAME#. The second (closing) part consists of text in the form of #>VARIABLE_NAME#. Conditional variables can have dependant variables, the value of which is set automatically depending on the state of the conditional variable. The value of a conditional variable is output repeatedly until its value is false.

Variable name	Description		Dependant variables	Number of cycles
#<_IF_:condition#	True <i>condition</i>	if is	no	1
#>_1F_:condition#	true.	The		

At the present time the following conditional variables are supported:

	condition can be a variable name (in which case the expression is true, if such variable exists) or a variable_name =value string.		
# <pouring# #>POURING#</pouring# 	True, if vessel is used for filling ("Vessel carrying fluid" option in "General data" dialog box)	no	1
# <test# #>TEST#</test# 	True, if tests are performed ("Test type" option in "General data" dialog box)	No	1
# <element# #>ELEMENT#</element# 	True until all	#REPORT#	equal to the
# <element_brief# #>ELEMENT_BRIEF#</element_brief# 	or brief) from the list under the "Elements" tab are printed	#REPORT_BRIEF#	number of components included in the report
# <model_element# #>MODEL_ELEMENT#</model_element# 	True until all components from the list under the "Elements" tab are printed, where components must meet additional parameters, if such parameters are set.	#ELEMENT# # <parameters# #<attached#< th=""><th>equal to the number of components included in the report</th></attached#<></parameters# 	equal to the number of components included in the report
# <attached# #>ATTACHED#</attached# 	True until all components adjoined to the current and adjoining components are printed	#ELEMENT# # <parameters#< th=""><th>equal to the number of components adjoined to the current and adjoining components</th></parameters#<>	equal to the number of components adjoined to the current and adjoining components
# <parameters# #>PARAMETERS#</parameters# 	True until all parameters of the current component are	# <level# #COMPLEX# #CALC# #PIC# #NAME#</level# 	equal to the number of component parameters

	printed.	#DIM# #SYMB# #VAL#	
# <level# #>LEVEL#</level# 	Specifies parameter nesting level		equal to nesting level of the current parameter

Parameters of the #<MODEL_ELEMENT# conditional variable:

Parameter name	Description	Values	Default value
TOPLEVEL	"Top level" components, i.e. components composing the vessel shell	No	No
Т	Component type	CYL – cylindrical shell CYL_CLMN – cylindrical shell CONE – conical shell CONE_CLMN – conical shell CONEHEAD – fladd head CONEHEAD_STEEP – steep conical head flange FLANGEAPP – bolted FLANGEAPP_BOTT – head flange FLANGEAPP_BOTT – head FLAT_FLANGEAPP_BOTT – head flange FLAT_FLANGEAPP_ARM – valve flange FLAT_FLANGEAPP_ARM – valve flange FLAT_FLANGEAPP_ARM – valve flange FLAT_FLANGEAPP_S – flat head FLAT_FLANGEAPP_S – flat s	No

For example, to display intermediate analysis data for all components, the following text can be entered in the template:

#<ELEMENT#

#REPORT# #>ELEMENT#

Existing templates stored in the "Reports Templates" folder can be viewed as examples of template structure.

3.19.4. Embedding the vessel image

An image of the vessel can be inserted into the output using the #IMG# variable. The following parameters for the the #IMG# variable are available to adjust image output:

Parameter name	Description	Values	Default value
VIEW	view type	TOP – top view LEFT – left-side view FRONT – front view ISO – isometric view USER – custom view	FRONT
x	image width in pixels	1-65535	100
Y	image height in pixels	1-65535	100
STYLE	image style	SOLID – solid filling TRANSPARENT – transparent WIREFRAME – beam	SOLID
AA	if installed, perform image anti-aliasing (smoothing)	no	no

For example, to display an image containing beam top view of the vessel with dimension of 100x200 pixels, the following text must be entered:

#IMG:VIEW=TOP,X=100,Y=200,STYLE=WIREFRAME#

3.19.5. Embedding analysis time and date

Time and date can be inserted into the output in different formats using the #CALCDATE# variable. For time and date formatting, the #CALCDATE# variable has a string parameter DATEFORMAT, which can include the following fields:

Field	Description
%a	Abbreviated weekday name
%A	Full weekday name

%b	Abbreviated month name
%B	Full month name
%с	Date and time format appropriate for current locale
%d	Day of month as two digit number (01 – 31)
%Н	Hour in 24-hour format (00 – 23)
%I	Hour in 12-hour format (01 – 12)
%ј	Day of year as three digit number (001 – 366)
%m	Month as two digit number (01 – 12)
%М	Minute as two digit number (00 – 59)
%р	Current locale's A.M./P.M. indicator for 12-hour clock
%S	Second as two digit number (00 – 59)
%U	Week of year as two digit number, with Sunday as the first day of the week (00 $-$ 53)
%w	Weekday as two digit number (0 – 6; Sunday is 0)
%W	Week of year as two digit number, with Monday as the first day of the week $(00 - 53)$
%x	Date format appropriate for current locale
%X	Time format appropriate for current locale
%y	Year without century, as two digit number (00 – 99)
%Y	Year with century, as four digit number
%z,	Either time-zone name or time zone abbreviation, depending on registry settings;
%Z	leave empty if time zone is unknown

For example, for date output in the DD.MM.YYYY HH:MM, format, the following text must be entered:

#CALCDATE:DATEFORMAT=%d.%m.%Y %H:%M#

4. Example

4.1. Data input

An analysis of a horizontal vessel on saddle supports carrying petrochemical products (ρ =780 kg/m³) with excessive internal pressure of 1 atm is given as an example. Excessive pressure during hydro-testing is 2 atm.

The vessel includes a shell, 5000mm in length and 2400mm in diameter, and two ellipsoidal heads. The vessel is placed on saddle supports, 300mm in width and with a wrapping angle of 120° , with reinforcing pads, 500mm in width, 12mm in thickness and with a wrapping angle of 140° . Corrosion allowance is 2mm. The vessel is under axial compression force of 100000N.

New	
New apparatus Horizontal vessels and apparatuses Vertical vessels and apparatuses Column vessels and apparatuses	OK Cancel Help

After entering vessel type and general data, model creation can begin.

General data				×
Object name:				
Unit name:	tets		-	
Vessel with fluid			_	
Vessel filling ratio: (under operating conditions!)		100]%	
Operating environment	oil]	
Density of operating fluid:		880	kg/m3	
Test review:	Hydrotesting	~		
Test pressure:		0.2	MPa	
Calculation of nozzles and pipe flanges (module "PASSAT-Nozzle")				
OK		Cance	el	

Fig.4.1 Example: general data

Ellipsoidal head	
Component name: Ellipsoidal head Nº1	
Head material:	<u></u>
Cr3 V Properties Add	
Head inside diameter, D: 2400 mm	
Head wall thickness, s1: 10 mm	
Corrosion allowance, c1: 2 mm	
Negative allowance, c2: 0 mm	
Technological allowance, c3: 0 mm	
Head height, H: 600 mm	
Straight flange length, h1: 0 mm	
Welded joint efficiency, Fi: 0.9	
Calculation temperature, T: 20	
Calculation pressure, p:	
Insulation and lining >>	
OK C	ancel Design values calculation
Effective thickness including allowances: s1p + c = 2.866 mm Allowable pressure: [p] = 0.9225 MPa	

Fig.4.3 Example:head

The following model will be displayed in the graphic display window.

Fig.4.5. Example: calculation model

4.2. Analysis and output

To analyse the model, press "Vessel analysis F3" (or \blacksquare button). In the course if analysis a detailed report with intermediate results is generated, which opens automatically upon the end of analysis. Ready report looks like a web page, the left part of which includes the table of contents (Fig.4.6).

Fig.4.6 Example: report

To get detailed analysis output for a specific component, the component must be selected by clicking on it or pressing the "Tab" key.

5. References

- 1. SA 03-004-08. Strength Calculation of Vessels and Apparatuses. Norms and methods of strengthh calculation. Standard of Rostekhexpertiza Expert Association of technogenic hazardous facilities.
- STO-SA-03.003-2009. Vessels and apparatuses. Norms and methods of strength calculation. Seismic loads calculation. Standard of Association of Expert organizations of hazardous facilities (Association Rostekhexpertiza)
- 3. GOST 34233.1-2017. Vessels and apparatuses. Norms and methods of strength calculation. General requirements.
- 4. GOST 34233.2-2017. Vessels and apparatuses. Norms and methods of strength calculation. Calculation of cylindrical and conical shells, dished and flat bottoms and heads.
- 5. GOST 34233.3-2017. Vessels and apparatuses. Norms and methods of strength calculation. Reinforcement of openings in shells and heads under external and internal pressure. Strength calculation of shells and heads under external static loads on the nozzle.
- 6. GOST 34233.4-2017. Vessels and apparatuses. Norms and methods of strength calculation. Strength and leak-tightness calculation of flange joints.
- GOST 34233.5-2017. Vessels and apparatuses. Norms and methods of strength calculation. Calculation of the shells and heads from influence of support loads.
- 8. GOST 34233.6-2017. Vessels and apparatuses. Norms and methods of strength calculation. Strength calculation under low-cycle loads.
- 9. GOST 34233.7-2017. Vessels and apparatuses. Norms and methods of strength calculation. Heat exchangers.
- 10. GOST 34233.8-2017. Vessels and apparatuses. Norms and methods of strength calculation. Jacketed vessels and apparatuses.
- 11. GOST 34233.9-2017. Vessels and apparatuses. Norms and methods of strength calculation. Determination of stresses nozzle-to-shells and heads under action of pressure and external loads on the nozzle.
- 12. GOST 34233.10-2017. Vessels and apparatuses. Norms and methods of strength calculation. Vessels and apparatuses operating in hydrogen sulphide media.
- 13. GOST 34233.11-2017. Vessels and apparatuses. Norms and methods of strength calculation. Method of strength calculation of shells and head,

with provision for displacement of weld joint edges, angularity and outof-roundness of the shells.

- 14. GOST 34233.12-2017. Vessels and apparatuses. Norms and methods of strength calculation. Requirements to the form of presentation of strength calculations made on computer.
- 15. GOST 14249-89. Vessels and apparatuses. Norms and methods of strength calculation.
- 16. GOST 25221-82. Vessels and apparatuses. Spherical heads and covers without knuckle. Norms and methods of strength calculation.
- 17. GOST 26202-84. Vessels and apparatuses. Norms and methods of strength calculation from influence of supporting loads on the shells and heads.
- 18. GOST 24755-89. Vessels and apparatuses. Norms and methods of strength calculation of holes reinforcement.
- 19. GOST 25859-83. Steel vessels and apparatuses. Norms and methods of strength calculation under low-cycle loads.
- 20. GOST R 51273-99. Vessels and apparatuses. Norms and methods of strength calculation. Determination of calculated forces against wind and seismic loads for column vessels.
- 21. GOST R 51274-99. Vessels and apparatuses. Column vessels. Norms and methods of strength calculation.
- 22. GOST 34283-2017. Vessels and apparatuses. Vessels and Apparatus. Norms and methods of strength calculation from wind loads, seismic influence and other external loads.
- 23. GOST 25867-83. Vessels and apparatuses. Jacketed vessels. Norms and methods of strength calculation.
- 24. GOST 30780-2002. Steel vessels and apparatuses. Bellows and sliding joints. Strength calculation methods.
- 25. GOST 26159-84. Iron vessels and apparatuses. Norms and methods of strength calculation. General.
- 26. GOST 27772-88. Mill products for constructional steel works.
- 27. GOST R 54522-2011. High pressure vessels and apparatus. Norms and methods of strength calculation.
- 28. GOST 26303-84 High-pressure vessels and apparatus. Threaded studs. Methods of strength calculations.
- 29. GOST R 55722-2013. Vessels and apparatus. Stress analysis code. Seismic analysis.

- 30. GOST 34283-2017. Vessels and apparatus. Norms and methods of strength calculation under wind loads, seismic influence and other external loads.
- 31. GOST 31385-2016. Vertical cylindrical steel tanks for oil and oil-products. General specifications.
- 32. OST 26-01-86-88. Fixed metal seals for vessels and equipment at pressures from 10 to 100 MPa.
- 33. OST 26-1046-87. High-pressure vessels and apparatus. Methods of strength calculations.
- 34. PNAE G-7-002-86. Strength calculation norms of the equipment and pipelines of atomic power plants. –M.: Energoatomizdat, 1989. p. 525
- 35. SP 20.13330.2016. Set of rules. Loads and actions.
- 36. RD 24.200.08-90. Vessels and apparatuses. Norms and methods of stress analysis conical, ellipsoidal and spherical transitions.
- 37. RD 26-14-88. Vessels and apparatuses. Norms and methods of strength calculation. Components of heat exchangers.
- 38. RD 26-15-88. Vessels and apparatuses. Norms and methods of strength and leak integrity calculation of flange joints.
- 39. RD RTM 26-01-96-83. Flat round heads and heads with radial reinforcing ribs of vessels and apparatuses.
- 40. RD RTM 26-13-79. Heads and grids of air coolers. Strength analysis method.
- 41. RD 26-02-62-98. Strength calculation of vessel and apparatus components operating in corrosive hydrogen sulphide environments.
- 42. RD 26-02-63-87. Technical requirements towards designing and manufacturing of vessels, apparatuses and technological units of oil and gas treatment facilities working in environments causing hydrosulphuric corrosion cracking.
- 43. RD 10-249-98 Norms of strength calculation of stationary boilers and steam and hot-water pipelines.
- 44. OST 26-01-64-83. Fasteners. Construction and dimensions.
- 45. RD 26-01-169-89. Vessels and apparatuses. Norms and methods of strength calculation of the heads in attaching points of dumbbell piers.
- 46. RD 24.200.21-91. Vessels and apparatuses. Norms and methods of strength calculation of the components of floating heads within shell and tube heat exchangers.

- 47. RD 26-18-8-89. Weld joints of peep holes, nozzles and couplings welding. Basic types, structural components and dimensions.
- 48. RD 26.260.09-92. Vessels and apparatuses. Norms and methods of strength calculation of cylindrical shells and dished heads in junction points of nozzles under external static loads.
- 49. RTM 26-110-77. Strength calculation of cylindrical horizontal apparatus mounted on saddle supports.
- 50. RTM 26-111-77. Supports of cylindrical vertical vessels and apparatus. Norms and methods of strength calculation.
- 51. RD 26-01-149-84. Steel welded vessels and apparatuses with jackets made of semi-pipes located along generatrix. Codes and methods of strength calculation.
- 52. RD RTM 26-01-44-78. Details of pipelines for pressure over 10 to 100 MPa. Norms and methods of strength calculation.
- 53. SA 03-003-07. Strength and vibration calculation of steel technological pipelines. Standard of Rostekhexpertiza Expert Association of technogenic hazardous facilities.
- 54. STO-SA-03-002-2009. Rules for design, fabrication and assembly of vertical cylindrical steel tanks for oils. Standard of Rostekhexpertiza Expert Association of technogenic hazardous facilities.
- 55. WSP 34-01-03 MO RF. Guide to the calculation and design of metal tanks and pipelines in fuel storages of the Ministry of Defense of the Russian Federation
- 56. Gorbachev M.V. "Heat and Mass Transfer". Publishing house of NSTU, 2015.
- 57. Standards of the Expansion Joint Manufactures Association, INC, 8th Edition, 2003.
- 58. EN 13445-3. European Standard. Unfired pressure vessels Part 3. Issue 1 (2002-05).
- 59. EN 1991-1-4. Actions on structures General actions Wind actions
- 60. EN 1998-1. Design of structures for earthquake resistance. General rules, seismic actions and rules for buildings
- 61. ASME Boiler and Pressure Vessel Code. Sect. VIII, Div.1.
- 62. ASME VIII, Div 1, 2015. Rules for construction of pressure vessels.
- 63. ASME VIII, Div 2, 2015. Rules for construction of pressure vessels. Alternative rules.
- 64. ASME II, 2015.

- 65. WRC-107 Welding Research Council. Bulletin. "Local Stresses in Spherical and Cylindrical Shells due to External Loadings". 1979.
- 66. WRC-297 Welding Research Council. Bulletin. "Local Stresses in Cylindrical Shells due to External Loadings on Nozzles Supplement to WRC Bulletin №107". 1987.
- 67. WRC-537 Welding Research Council. Bulletin. "Precision Equations and Enhanced diagrams for Local Stresses in Spherical and Cylindrical Shells due to External Loadings for implementation of WRC Bulletin 107. 2013.
- 68. BS-5500: 1976 Specification for Unfired fusion welded pressure vessels. British Standards Institution.
- 69. WRC-368 Welding Research Council. Bulletin. "Stresses in Intersecting Cylinders subjected to Pressure". 1991. –32 p.
- Bildy, Les M., 2000, "A Proposed Method for Finding Stress and Allowable Pressure in Cylinders with Radial Nozzles," PVP Vol. 399, ASME, New York, NY, pp. 77-82.
- Zick, L.P., "Stresses in Large Horizontal Cylindrical Pressure Vessels on Two Saddle Supports", Welding Research Journal Supplement, September,1951.
- 72. Henry H.Bednar, Pressure Vessel Design Handbook. Second edition. 1986
- 73. Dennis R.Moss, Pressure Vessel Design Manual. 1987
- 74. AzDTN 2.3-1. Seysmik rayonlarda tikinti (zərbaycan Respublikası Dövlət Şəhərsalma və Arxitektura Komitəsi)
- 75. IS 1893. Indian Standard. Criteria for earthquake resistant design of structures.
- 76. API 650-2020. Welded Tanks for Oil Storage